Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 9 additions & 9 deletions tfjs-backend-wasm/src/kernels/FusedBatchNorm.ts
Original file line number Diff line number Diff line change
Expand Up @@ -32,19 +32,19 @@ interface BatchNormAttrs extends NamedAttrMap {
}

let wasmBatchNorm: (
xId: number, meanId: number, varianceId: number, offsetId: number,
scaleId: number, varianceEpsilon: number, outId: number) => void;
xId: number, meanId: number, varianceId: number, offsetId: number,
scaleId: number, varianceEpsilon: number, outId: number) => void;

function setup(backend: BackendWasm): void {
wasmBatchNorm = backend.wasm.cwrap(
'FusedBatchNorm', null /* void */,
['number', 'number', 'number', 'number', 'number', 'number', 'number']);
'FusedBatchNorm', null /* void */,
['number', 'number', 'number', 'number', 'number', 'number', 'number']);
}

function fusedBatchNorm(
args:
{backend: BackendWasm, inputs: BatchNormInputs, attrs: BatchNormAttrs}):
TensorInfo {
args:
{backend: BackendWasm, inputs: BatchNormInputs, attrs: BatchNormAttrs}):
TensorInfo {
const {backend, inputs, attrs} = args;
const {varianceEpsilon} = attrs;
const {x, mean, variance, offset, scale} = inputs;
Expand All @@ -63,12 +63,12 @@ function fusedBatchNorm(
const outId = backend.dataIdMap.get(out.dataId).id;

wasmBatchNorm(
xId, meanId, varianceId, offsetId, scaleId, varianceEpsilon, outId);
xId, meanId, varianceId, offsetId, scaleId, varianceEpsilon, outId);
return out;
}

registerKernel({
kernelName: 'BatchNormalization',
kernelName: 'FusedBatchNorm',
backendName: 'wasm',
setupFunc: setup,
kernelFunc: fusedBatchNorm
Expand Down
111 changes: 111 additions & 0 deletions tfjs-core/src/gradients/FusedBatchNorm_grad.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {FusedBatchNorm, FusedBatchNormAttrs} from '../kernel_names';
import {GradConfig, NamedAttrMap} from '../kernel_registry';
import {xAs4D} from '../ops/batchnorm_util';
import {getReductionAxes} from '../ops/broadcast_util';
import {add, mul, reshape, sub} from '../ops/ops';
import {sum} from '../ops/reduction_ops';
import {scalar} from '../ops/tensor_ops';
import {tile} from '../ops/tile';
import {rsqrt} from '../ops/unary_ops';
import {Tensor, Tensor4D} from '../tensor';
import {Rank, ShapeMap} from '../types';

export const fusedBatchNormGradConfig: GradConfig = {
kernelName: FusedBatchNorm,
inputsToSave: ['x', 'mean', 'variance', 'scale'],
gradFunc: <R extends Rank>(
dy: Tensor, saved: Tensor[], attrs: NamedAttrMap) => {
const batchNormalizationAttrs: FusedBatchNormAttrs =
attrs as {} as FusedBatchNormAttrs;
const {varianceEpsilon} = batchNormalizationAttrs;
const [x, mean, variance, scale] = saved;

const x4D: Tensor4D = xAs4D(x);

const scaleValue = scale == null ? scalar(1) : scale;
const reductionAxes = getReductionAxes(mean.shape, x4D.shape);
const tileShape: number[] = [];
if (mean.rank === 1) {
for (let i = 0; i < x4D.shape.length - 1; ++i) {
tileShape.push(x4D.shape[i]);
}
tileShape.push(1);
}

const xMinusMean = sub(x, mean);
const dyTimesScaleValue = mul(dy, scaleValue);
const oneOverSqrtVariance = rsqrt(add(variance, scalar(varianceEpsilon)));
const minusHalfRCube = mul(
mul(mul(oneOverSqrtVariance, oneOverSqrtVariance), oneOverSqrtVariance),
scalar(-0.5));

const derX = () => {
if (mean.rank === 1) {
return reshape(
mul(mul(dy,
tile(
oneOverSqrtVariance.as4D(1, 1, 1, mean.shape[0]),
tileShape)),
scaleValue),
x.shape);
} else {
return reshape(mul(mul(dy, oneOverSqrtVariance), scaleValue), x.shape);
}
};
const derMean = () => {
let meanDer =
mul(mul(oneOverSqrtVariance, scalar(-1)), dyTimesScaleValue);
if (mean.rank === 1) {
meanDer = sum(meanDer, reductionAxes);
}
return reshape(meanDer, mean.shape as ShapeMap[R]);
};
const derVariance = () => {
let varianceDer = mul(mul(minusHalfRCube, xMinusMean), dyTimesScaleValue);

if (mean.rank === 1) {
varianceDer = sum(varianceDer, reductionAxes);
}
return reshape(varianceDer, mean.shape as ShapeMap[R]);
};
const derScale = () => {
const xMinusMean2TimesRsqrt = mul(xMinusMean, oneOverSqrtVariance);

let scaleDer = mul(dy, xMinusMean2TimesRsqrt);
if (mean.rank === 1) {
scaleDer = sum(scaleDer, reductionAxes);
}
return reshape(scaleDer, mean.shape as ShapeMap[R]);
};
const derOffset = () => {
let offsetDer = dy;
if (mean.rank === 1) {
offsetDer = sum(offsetDer, reductionAxes);
}
return reshape(offsetDer, mean.shape as ShapeMap[R]);
};
return {
x: derX,
mean: derMean,
variance: derVariance,
scale: derScale,
offset: derOffset
};
}
};
7 changes: 7 additions & 0 deletions tfjs-core/src/kernel_names.ts
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,13 @@
import {NamedTensorInfoMap} from './kernel_registry';
import {PixelData} from './types';

export const FusedBatchNorm = 'FusedBatchNorm';
export type FusedBatchNormInputs =
Pick<NamedTensorInfoMap, 'x'|'scale'|'offset'|'mean'|'variance'>;
export interface FusedBatchNormAttrs {
varianceEpsilon: number;
}

export type BinaryInputs = Pick<NamedTensorInfoMap, 'a'|'b'>;

export const Div = 'Div';
Expand Down
Loading