Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
49 changes: 49 additions & 0 deletions tfjs-core/src/gradients/Add_grad.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {Add} from '../kernel_names';
import {GradConfig} from '../kernel_registry';
import * as broadcast_util from '../ops/broadcast_util';
import {Tensor} from '../tensor';

export const addGradConfig: GradConfig = {
kernelName: Add,
inputsToSave: ['a', 'b'],
gradFunc: (dy: Tensor, saved: Tensor[]) => {
const [a, b] = saved;
const outShape =
broadcast_util.assertAndGetBroadcastShape(a.shape, b.shape);

const derA = () => {
let res = dy;
const reduceAxes = broadcast_util.getReductionAxes(a.shape, outShape);
if (reduceAxes.length > 0) {
res = res.sum(reduceAxes);
}
return res.reshape(a.shape);
};
const derB = () => {
let res = dy;
const reduceAxes = broadcast_util.getReductionAxes(b.shape, outShape);
if (reduceAxes.length > 0) {
res = res.sum(reduceAxes);
}
return res.reshape(b.shape);
};

return {a: derA, b: derB};
}
};
13 changes: 8 additions & 5 deletions tfjs-core/src/kernel_names.ts
Original file line number Diff line number Diff line change
Expand Up @@ -21,18 +21,21 @@
import {NamedTensorInfoMap} from './kernel_registry';
import {PixelData} from './types';

export const Add = 'Add';
export type AddInputs = BinaryInputs;

export type BinaryInputs = Pick<NamedTensorInfoMap, 'a'|'b'>;

export const Div = 'Div';
export type DivInputs = BinaryInputs;

export const FusedBatchNorm = 'FusedBatchNorm';
export type FusedBatchNormInputs =
Pick<NamedTensorInfoMap, 'x'|'scale'|'offset'|'mean'|'variance'>;
export interface FusedBatchNormAttrs {
varianceEpsilon: number;
}

export type BinaryInputs = Pick<NamedTensorInfoMap, 'a'|'b'>;

export const Div = 'Div';
export type DivInputs = BinaryInputs;

export const SquaredDifference = 'SquaredDifference';
export type SquaredDifferenceInputs = BinaryInputs;

Expand Down
69 changes: 69 additions & 0 deletions tfjs-core/src/ops/add.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {ENGINE, ForwardFunc} from '../engine';
import {Add, AddInputs} from '../kernel_names';
import {Tensor} from '../tensor';
import {NamedTensorMap} from '../tensor_types';
import {makeTypesMatch} from '../tensor_util';
import {convertToTensor} from '../tensor_util_env';
import {TensorLike} from '../types';

import {op} from './operation';

/**
* Adds two `tf.Tensor`s element-wise, A + B. Supports broadcasting.
*
* We also expose `tf.addStrict` which has the same signature as this op and
* asserts that `a` and `b` are the same shape (does not broadcast).
*
* ```js
* const a = tf.tensor1d([1, 2, 3, 4]);
* const b = tf.tensor1d([10, 20, 30, 40]);
*
* a.add(b).print(); // or tf.add(a, b)
* ```
*
* ```js
* // Broadcast add a with b.
* const a = tf.scalar(5);
* const b = tf.tensor1d([10, 20, 30, 40]);
*
* a.add(b).print(); // or tf.add(a, b)
* ```
* @param a The first `tf.Tensor` to add.
* @param b The second `tf.Tensor` to add. Must have the same type as `a`.
*/
/** @doc {heading: 'Operations', subheading: 'Arithmetic'} */
function add_<T extends Tensor>(a: Tensor|TensorLike, b: Tensor|TensorLike): T {
let $a = convertToTensor(a, 'a', 'add');
let $b = convertToTensor(b, 'b', 'add');
[$a, $b] = makeTypesMatch($a, $b);

const forward: ForwardFunc<Tensor> = (backend, save) => {
const res = backend.add($a, $b);
save([$a, $b]);
return res;
};

const inputs: AddInputs = {a: $a, b: $b};

return ENGINE.runKernelFunc(
forward, inputs as {} as NamedTensorMap, null /* gradient */,
Add) as T;
}

export const add = op({add_});
Loading