Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 54 additions & 0 deletions tfjs-backend-webgpu/src/kernels/Multinomial.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
/**
* @license
* Copyright 2023 Google LLC.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/

import {KernelConfig, KernelFunc, Multinomial, MultinomialAttrs, MultinomialInputs, TensorInfo} from '@tensorflow/tfjs-core';

import {WebGPUBackend} from '../backend_webgpu';
import {MultinomialProgram} from '../multinomial_webgpu';

import {softmax} from './Softmax';

export function multinomial(args: {
inputs: MultinomialInputs,
backend: WebGPUBackend,
attrs: MultinomialAttrs
}): TensorInfo {
const {inputs, backend, attrs} = args;
const {logits} = inputs;
const {numSamples, seed, normalized} = attrs;

const probs = normalized ?
logits :
softmax(
{inputs: {logits}, backend, attrs: {dim: logits.shape.length - 1}});
const batchSize = probs.shape[0];
const numOutcomes = probs.shape[1];
const program = new MultinomialProgram(batchSize, numSamples);
const uniformData =
[{type: 'float32', data: [seed]}, {type: 'int32', data: [numOutcomes]}];
const res = backend.runWebGPUProgram(program, [probs], 'int32', uniformData);
if (!normalized) {
backend.disposeData(probs.dataId);
}
return res;
}

export const multinomialConfig: KernelConfig = {
kernelName: Multinomial,
backendName: 'webgpu',
kernelFunc: multinomial as unknown as KernelFunc
};
77 changes: 77 additions & 0 deletions tfjs-backend-webgpu/src/multinomial_webgpu.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
/**
* @license
* Copyright 2023 Google LLC.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/

import {getMainHeaderString as main, WebGPUProgram} from './webgpu_program';
import {computeDispatch, flatDispatchLayout} from './webgpu_util';

export class MultinomialProgram implements WebGPUProgram {
variableNames: string[] = ['probs'];
outputShape: number[] = [];
shaderKey: string;
dispatchLayout: {x: number[]};
dispatch: [number, number, number];
uniforms = 'seed : f32, numOutcomes: i32,';
workgroupSize: [number, number, number] = [64, 1, 1];
size = true;

constructor(batchSize: number, numSamples: number) {
this.outputShape = [batchSize, numSamples];
this.dispatchLayout = flatDispatchLayout(this.outputShape);
this.dispatch = computeDispatch(
this.dispatchLayout, this.outputShape, this.workgroupSize);

this.shaderKey = 'multinomial';
}

getUserCode(): string {
const userCode = `
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
fn random (seed : f32, resultUV : vec2<f32>) -> f32 {
let HASHSCALE1 = 443.8975;
let p = resultUV * seed;
var p3 = fract(vec3<f32>(p.xyx) * HASHSCALE1);
p3 = p3 + dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We can put this in shader_util.ts, so that other code may share.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The function could be only used for 2D coordinate axes. If we want to move it to shader_util.ts, we should design a more common function for 1~4D coordinate axes on webgpu backend. Is it OK to do it in the future if necessary?

Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sure, we can make it a util function when necessary in the future.


${main('index')} {
if (index < uniforms.size) {
let coords = getOutputCoords();
let batch = coords[0];

let resUV = vec2<f32>(f32(coords[1]) / f32(uniforms.outShape[1]),
f32(coords[0]) / f32(uniforms.outShape[0]));
let r = random(uniforms.seed, resUV);
var cdf = 0.0;
for (var i = 0; i < uniforms.numOutcomes - 1; i = i + 1) {
cdf = cdf + getProbs(batch, i);

if (r < cdf) {
setOutputAtIndexI32(index, i);
return;
}
}

// If no other event happened, last event happened.
setOutputAtIndexI32(index, uniforms.numOutcomes - 1);
}
}
`;
return userCode;
}
}
2 changes: 2 additions & 0 deletions tfjs-backend-webgpu/src/register_all_kernels.ts
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,7 @@ import {minConfig} from './kernels/Min';
import {minimumConfig} from './kernels/Minimum';
import {mirrorPadConfig} from './kernels/MirrorPad';
import {modConfig} from './kernels/Mod';
import {multinomialConfig} from './kernels/Multinomial';
import {multiplyConfig} from './kernels/Multiply';
import {negConfig} from './kernels/Neg';
import {nonMaxSuppressionV3Config} from './kernels/NonMaxSuppressionV3';
Expand Down Expand Up @@ -238,6 +239,7 @@ const kernelConfigs: KernelConfig[] = [
minimumConfig,
mirrorPadConfig,
modConfig,
multinomialConfig,
multiplyConfig,
negConfig,
nonMaxSuppressionV3Config,
Expand Down
1 change: 0 additions & 1 deletion tfjs-backend-webgpu/src/setup_test.ts
Original file line number Diff line number Diff line change
Expand Up @@ -257,7 +257,6 @@ const TEST_FILTERS: TestFilter[] = [
'maxPool3dBackprop ',
'maxPoolBackprop ',
'maxPoolWithArgmax ',
'multinomial ',
'raggedGather ',
'raggedRange ',
'raggedTensorToTensor ',
Expand Down