Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
69 changes: 69 additions & 0 deletions tfjs-backend-webgpu/src/broadcast_args_webgpu.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
/**
* @license
* Copyright 2023 Google LLC.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/

import {getMainHeaderString as main, WebGPUProgram} from './webgpu_program';
import {computeDispatch, flatDispatchLayout} from './webgpu_util';

export class BroadcastArgsProgram implements WebGPUProgram {
outputShape: number[] = [];
shaderKey: string;
dispatchLayout: {x: number[]};
dispatch: [number, number, number];
variableNames = ['s0', 's1'];
uniforms = 's0Size : i32, s1Size : i32, ';
workgroupSize: [number, number, number] = [64, 1, 1];
size = true;

constructor(shape: number) {
this.outputShape = [shape];
this.dispatchLayout = flatDispatchLayout(this.outputShape);
this.dispatch = computeDispatch(
this.dispatchLayout, this.outputShape, this.workgroupSize);

this.shaderKey = 'broadcastArgs';
}

getUserCode(): string {
const userCode = `
${main('index')} {
if (index < uniforms.size) {
var s0 = 1.0;
var s1 = 1.0;
let indexS0 = index - uniforms.size + uniforms.s0Size;
let indexS1 = index - uniforms.size + uniforms.s1Size;
if (indexS0 >= 0) {
s0 = getS0(indexS0);
}
if (indexS1 >= 0) {
s1 = getS1(indexS1);
}

if (s0 == 1.0) {
setOutputAtIndex(index, s1);
} else if (s1 == 1.0) {
setOutputAtIndex(index, s0);
} else if (s0 != s1) {
setOutputAtIndex(index, uniforms.NAN);
} else {
setOutputAtIndex(index, s0);
}
}
}
`;
return userCode;
}
}
55 changes: 55 additions & 0 deletions tfjs-backend-webgpu/src/kernels/BroadcastArgs.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
/**
* @license
* Copyright 2023 Google LLC.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/

import {backend_util, BroadcastArgs, BroadcastArgsInputs, KernelConfig, KernelFunc, TensorInfo, TypedArray, util} from '@tensorflow/tfjs-core';

import {WebGPUBackend} from '../backend_webgpu';
import {BroadcastArgsProgram} from '../broadcast_args_webgpu';

export function broadcastArgs(args: {
inputs: BroadcastArgsInputs,
backend: WebGPUBackend,
}): TensorInfo {
const {inputs, backend} = args;
const {s0, s1} = inputs;

if (backend.shouldExecuteOnCPU([s0, s1])) {
const s0TensorInfo = backend.tensorMap.get(s0.dataId);
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why don't we reuse the CPU impl?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

  1. cpu backend does not export the CPU impl for other backends.
  2. cpu backend also calls the tfjs-core common function to implement the feature, it is better for other backends to call the tfjs-core common function directly.

Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Per discussion, a similar interface (xxxImplCPU) to be used as CPU fallback is a good approach. However, this may need some changes at CPU backend, so let's refine this in a future PR. LGTM with this one.

const s1TensorInfo = backend.tensorMap.get(s1.dataId);
const s0Vals = s0TensorInfo.values as TypedArray;
const s1Vals = s1TensorInfo.values as TypedArray;
const broadcastShape = backend_util.assertAndGetBroadcastShape(
Array.from(s0Vals), Array.from(s1Vals));
return backend.makeTensorInfo(
[broadcastShape.length], 'int32', Int32Array.from(broadcastShape));
}

const s0Size = util.sizeFromShape(s0.shape);
const s1Size = util.sizeFromShape(s1.shape);
const outputSize = Math.max(s0Size, s1Size);

const program = new BroadcastArgsProgram(outputSize);
const uniformData =
[{type: 'int32', data: [s0Size]}, {type: 'int32', data: [s1Size]}];
return backend.runWebGPUProgram(program, [s0, s1], 'int32', uniformData);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you also add a cpu path if s0 and s1 is on cpu since the inputs are really small?

}

export const broadcastArgsConfig: KernelConfig = {
kernelName: BroadcastArgs,
backendName: 'webgpu',
kernelFunc: broadcastArgs as unknown as KernelFunc
};
2 changes: 2 additions & 0 deletions tfjs-backend-webgpu/src/register_all_kernels.ts
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ import {avgPoolGradConfig} from './kernels/AvgPoolGrad';
import {batchMatMulConfig} from './kernels/BatchMatMul';
import {batchToSpaceNDConfig} from './kernels/BatchToSpaceND';
import {bincountConfig} from './kernels/Bincount';
import {broadcastArgsConfig} from './kernels/BroadcastArgs';
import {castConfig} from './kernels/Cast';
import {ceilConfig} from './kernels/Ceil';
import {clipByValueConfig} from './kernels/ClipByValue';
Expand Down Expand Up @@ -183,6 +184,7 @@ const kernelConfigs: KernelConfig[] = [
batchMatMulConfig,
batchToSpaceNDConfig,
bincountConfig,
broadcastArgsConfig,
castConfig,
ceilConfig,
clipByValueConfig,
Expand Down
1 change: 0 additions & 1 deletion tfjs-backend-webgpu/src/setup_test.ts
Original file line number Diff line number Diff line change
Expand Up @@ -240,7 +240,6 @@ const TEST_FILTERS: TestFilter[] = [
// Not implemented kernel list.
'avgPool3d ',
'avgPool3dBackprop ',
'broadcastArgs ',
'conv2DBackpropFilter ',
'gradient with clones, input=2x2x1,d2=1,f=1,s=1,d=1,p=same', // Conv2DBackpropFilter
'conv1d gradients', // Conv2DBackpropFilter
Expand Down