Why ferns are fractal: A mathematical theory of GRN constraint manifolds and morphological possibility
This repository presents a mathematical framework explaining why ancient plant lineages (ferns, lycophytes, liverworts) exhibit recursive, fractal-like geometry while angiosperms display extraordinary morphological diversity.
The core insight: A gene regulatory network (GRN) is not an algorithm computing morphology—it is a low-dimensional constraint manifold through which high-dimensional molecular dynamics must flow. A narrow channel cannot transmit complex morphological signals, regardless of the underlying dynamics.
The central equation bounds morphological complexity by channel dimension:
where
Empirical finding: Duckweed (Spirodela polyrhiza), despite being an angiosperm, has developmental dimensionality
This confirms the central prediction: morphological complexity, not phylogenetic age, determines developmental dimensionality.
| Species | Clade | D_dev | Morphology |
|---|---|---|---|
| Marchantia polymorpha | Liverwort | 1.97 | Thalloid |
| Spirodela polyrhiza | Angiosperm | 1.99 | Minimal frond |
| Selaginella moellendorffii | Lycophyte | 2.02 | Fractal branching |
| Equisetum hyemale | Horsetail | 4.55 | Segmented stem |
| Physcomitrium patens | Moss | 5.95 | Simple gametophyte |
| Arabidopsis thaliana | Angiosperm | 7.30 | Complex rosette |
High-dimensional molecular dynamics funneled to a low-dimensional developmental manifold.
Fern cells have ~3 independent choices; angiosperm cells have ~8.
The same GRN constrains growth at frond, pinna, and pinnule levels.
Narrow channels produce stereotyped outcomes; wide channels enable diversity.
The paper proves:
-
Participation Ratio Bounds (Theorem 3.1):
$1 \leq \text{PR}(\mathbf{C}) \leq r$ -
GRN Cost Scaling (Theorem 4.1):
$C_{\text{total}}(D) = \Theta(D^{2\gamma})$ -
Survival Threshold (Theorem 5.1):
$L^* = -\tau \ln(1 - C/\mu)$ -
Dimensionality-Geometry Correspondence (Theorem 7.1): Low-D channels are constrained to self-similar morphologies.
├── paper/
│ ├── developmental_dimensionality.tex # Main manuscript
│ ├── developmental_dimensionality.pdf # Compiled PDF
│ └── references.bib # Bibliography
├── code/
│ ├── compute_geometric_plants_dimensionality.py # D_dev computation
│ ├── create_manifold_story.py # Generate figures
│ ├── create_grn_metabolic_figures.py # Metabolic visualizations
│ └── create_lsystem_geometry.py # L-system figures
├── figures/ # Publication figures
├── data/ # Expression data (GEO)
└── archive/ # Old drafts
# Compute developmental dimensionality
python code/compute_geometric_plants_dimensionality.py
# Generate manifold story figures
python code/create_manifold_story.py
# Generate all figures
python code/create_grn_metabolic_figures.py
python code/create_lsystem_geometry.pyRequirements: numpy, pandas, matplotlib, scipy
- Arabidopsis: AtGenExpress GSE5630 (60 developmental stages)
- Moss: GEO GSE142053 (20 samples)
- Geometric plants: GEO GSE270814 (Marchantia, Selaginella, Equisetum)
- Duckweed: GEO GSE235730 (13 samples, 6 developmental stages)
@article{todd2026developmental,
title={Developmental Dimensionality and Morphological Geometry:
A Mathematical Framework for Plant Evo-Devo},
author={Todd, Ian},
journal={In preparation},
year={2026}
}This paper is part of a research program on dimensional constraints in biological systems:
- Minimal Embedding Dimension — Information geometry bounds
- Oscillatory Scaling Limits — Coherence time constraints
MIT License. See LICENSE for details.
Ian Todd Sydney Medical School, University of Sydney itod2305@uni.sydney.edu.au ORCID: 0009-0002-6994-0917