You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Phony News Classifier is a repository which contains analysis of a natural language processing application i.e fake news classifier with the help of various text preprocessing strategies like bag of words,tfidf vectorizer,lemmatization,Stemming with Naive bayes and other deep learning RNN (LSTM) and maintaining the detailed accuracy below
TFIDF being the most basic and simple topic in NLP, there's alot that can be done using TFIDF only! So, in this repo, I'll be adding the blog, TFIDF basics, wonders done using tfidf etc.
For our final project, our group chose to use a dataset (from Kaggle) that contained medical transcriptions and the respective medical specialties (4998 datapoints). We chose to implement multiple supervised classification machine learning models - after heavily working on the corpora - to see if we were able to correctly classify the medical sp…
Data consists of tweets scrapped using Twitter API. Objective is sentiment labelling using a lexicon approach, performing text pre-processing (such as language detection, tokenisation, normalisation, vectorisation), building pipelines for text classification models for sentiment analysis, followed by explainability of the final classifier
Learned to detect fake news with Python. We took a political dataset, implemented a TfidfVectorizer, initialized a PassiveAggressiveClassifier, and fit our model. We ended up obtaining an accuracy of 92.82% in magnitude.
The aim - is to develop a model that will give accurate predictions for the customer's test sample, but the training sample for is not given. It should be collected by parsing
Fake new detection using text classification as real or fake news segments. Required installations - Python 3.8, NLTK, Scikit-Learn, Jupyter. Text cleaning, tokenization, vectorization, classification model generation and evaluation.