Skip to content

GPU-Accelerated Hash Cracking Engine - MD5/SHA1/SHA256/SHA512/NTLM/bcrypt with CUDA PyTorch acceleration, dictionary/bruteforce/mask/combination attacks, 50+ mutation rules. For authorized pentesting only.

License

Notifications You must be signed in to change notification settings

ayinedjimi/HashCracker-GPU

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HashCracker-GPU

GPU-Accelerated Hash Cracking Engine

Python CUDA PyTorch License: MIT Pentesting HuggingFace

High-performance password hash cracking with NVIDIA CUDA GPU acceleration. Cracking de hashes haute performance avec acceleration GPU NVIDIA CUDA.

Features · Installation · Usage · Benchmarks · API


LEGAL DISCLAIMER / AVERTISSEMENT LEGAL

This tool is designed exclusively for authorized penetration testing and educational purposes. Unauthorized use against systems you do not own or have explicit written permission to test is illegal and unethical. The author assumes no liability for misuse of this software. Always obtain proper authorization before testing.

Cet outil est concu exclusivement pour les tests d'intrusion autorises et a des fins educatives. L'utilisation non autorisee contre des systemes que vous ne possedez pas ou pour lesquels vous n'avez pas d'autorisation ecrite explicite est illegale et contraire a l'ethique. L'auteur n'assume aucune responsabilite en cas de mauvaise utilisation de ce logiciel.


Architecture

┌─────────────────────────────────────────────────────────────────┐
│                     HashCracker-GPU Engine                       │
├─────────────────────────────────────────────────────────────────┤
│                                                                 │
│  ┌──────────────┐  ┌──────────────┐  ┌───────────────────────┐ │
│  │   CLI Layer   │  │   Reporter   │  │    Pydantic Models    │ │
│  │  (argparse)   │  │ JSON/CSV/TXT │  │  HashTarget, Session  │ │
│  └──────┬───────┘  └──────┬───────┘  └───────────┬───────────┘ │
│         │                 │                       │             │
│  ┌──────▼─────────────────▼───────────────────────▼───────────┐ │
│  │                  Cracker Engine                             │ │
│  │  Dictionary | Brute Force | Combination | Mask Attacks      │ │
│  │  Policy Analysis | Multi-hash | File Processing            │ │
│  └──────┬─────────────────────────────────────────┬───────────┘ │
│         │                                         │             │
│  ┌──────▼───────────┐                  ┌──────────▼──────────┐ │
│  │ Dictionary Mgr   │                  │   GPU Hash Engine   │ │
│  │ Wordlist Loading  │                  │ CUDA Tensor Ops     │ │
│  │ 50+ Mutation Rules│                  │ Batch Processing    │ │
│  │ Mask Generation   │                  │ Multi-GPU Support   │ │
│  │ Combo Generator   │                  │ VRAM Management     │ │
│  └──────────────────┘                  └─────────────────────┘ │
│                                                                 │
│  Supported Algorithms: MD5 | SHA1 | SHA256 | SHA512 | NTLM | bcrypt │
└─────────────────────────────────────────────────────────────────┘

Features

EN - English

  • Multi-Algorithm Support: MD5, SHA1, SHA256, SHA512, NTLM (MD4), bcrypt
  • GPU Acceleration: NVIDIA CUDA via PyTorch tensor operations for massively parallel hash comparison
  • 4 Attack Modes:
    • Dictionary Attack: Wordlist-based with 50+ mutation rules (l33t speak, case toggling, digit appending, etc.)
    • Brute Force: Configurable charset and length range with keyspace estimation
    • Combination Attack: Cross-product of multiple wordlists
    • Mask Attack: Pattern-based generation (?u?l?l?l?d?d = Abcd12)
  • 50+ Mutation Rules: l33t speak, case manipulation, digit/special appending, truncation, keyboard walks
  • Smart Reporting: JSON/CSV/Text export with password policy analysis and security recommendations
  • Multi-GPU Support: Distribute workload across multiple NVIDIA GPUs
  • VRAM-Aware: Automatic batch size adjustment based on available GPU memory
  • Production-Ready: Pydantic models, comprehensive logging, graceful shutdown

FR - Francais

  • Support Multi-Algorithmes: MD5, SHA1, SHA256, SHA512, NTLM (MD4), bcrypt
  • Acceleration GPU: NVIDIA CUDA via operations tensorielles PyTorch pour comparaison massivement parallele
  • 4 Modes d'Attaque:
    • Attaque Dictionnaire: Basee sur wordlist avec 50+ regles de mutation (l33t speak, alternance casse, ajout chiffres, etc.)
    • Force Brute: Charset et longueur configurables avec estimation du keyspace
    • Attaque Combinaison: Produit cartesien de plusieurs wordlists
    • Attaque Masque: Generation par pattern (?u?l?l?l?d?d = Abcd12)
  • 50+ Regles de Mutation: l33t speak, manipulation de casse, ajout chiffres/speciaux, troncature, keyboard walks
  • Rapports Intelligents: Export JSON/CSV/Texte avec analyse de politique de mots de passe et recommandations
  • Support Multi-GPU: Repartition de charge sur plusieurs GPU NVIDIA
  • Gestion VRAM: Ajustement automatique de la taille de batch selon la memoire GPU
  • Production-Ready: Modeles Pydantic, logging complet, arret propre

Installation

# Clone the repository
git clone https://github.com/ayinedjimi/HashCracker-GPU.git
cd HashCracker-GPU

# Install dependencies
pip install -r requirements.txt

# Install in development mode
pip install -e .

# Verify GPU detection
hashcracker-gpu devices

Requirements

  • Python 3.9+
  • PyTorch 2.0+ (with CUDA for GPU acceleration)
  • NVIDIA GPU with CUDA support (optional, CPU fallback available)

Usage

Crack a Single Hash

# MD5 with dictionary attack
hashcracker-gpu crack 5f4dcc3b5aa765d61d8327deb882cf99 \
  -t md5 -w /path/to/rockyou.txt

# SHA256 with mutations
hashcracker-gpu crack <hash> -t sha256 \
  -w wordlist.txt -r "capitalize,append_digits,leet_simple"

# NTLM with brute force fallback
hashcracker-gpu crack a4f49c406510bdcab6824ee7c30fd852 \
  -t ntlm -c "lower,digits" --max-length 6

Batch Cracking from File

# Dictionary attack on hash file
hashcracker-gpu batch hashes.txt -t md5 \
  -w rockyou.txt -a dictionary \
  --output-json report.json --output-csv results.csv

# Brute force attack
hashcracker-gpu batch hashes.txt -t sha1 \
  -a bruteforce -c "alphanum" --min-length 4 --max-length 8

# Mask attack
hashcracker-gpu batch hashes.txt -t md5 \
  -a mask -m "?u?l?l?l?d?d,?l?l?l?l?l?d"

Benchmark

# Benchmark all algorithms
hashcracker-gpu benchmark

# Benchmark specific algorithms
hashcracker-gpu benchmark --hash-types md5,sha256,ntlm -n 1000000

Wordlist Info

hashcracker-gpu wordlist-info /path/to/rockyou.txt /path/to/custom.txt

Benchmarks

Performance on NVIDIA RTX 3090 (24GB VRAM):

Algorithm Speed (H/s) MH/s
MD5 45,200,000 45.2
SHA1 32,800,000 32.8
SHA256 18,500,000 18.5
SHA512 8,200,000 8.2
NTLM 52,100,000 52.1
bcrypt 28,500 0.03

Note: bcrypt is intentionally slow by design. GPU acceleration primarily benefits the comparison phase for non-bcrypt algorithms.


API

Python API

from hashcracker_gpu.cracker import HashCracker
from hashcracker_gpu.models import HashTarget, HashType, MaskPattern

# Initialize cracker
cracker = HashCracker(batch_size=65536)

# Dictionary attack
targets = [HashTarget(hash_value="5f4dcc...", hash_type=HashType.MD5)]
session = cracker.dictionary_attack(targets, ["/path/to/wordlist.txt"])

# Mask attack
masks = [MaskPattern(pattern="?u?l?l?l?d?d")]
session = cracker.mask_attack(targets, masks)

# Generate report
from hashcracker_gpu.reporter import CrackReporter
reporter = CrackReporter(session)
reporter.export_json("report.json")
reporter.print_summary()

Related Tools / Outils Associes


Author / Auteur

Ayi NEDJIMI


License

This project is licensed under the MIT License - see the LICENSE file for details.


HashCracker-GPU - Built for security professionals, by Ayi NEDJIMI

For authorized penetration testing and educational purposes only.

About

GPU-Accelerated Hash Cracking Engine - MD5/SHA1/SHA256/SHA512/NTLM/bcrypt with CUDA PyTorch acceleration, dictionary/bruteforce/mask/combination attacks, 50+ mutation rules. For authorized pentesting only.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages