Skip to content

deepagents-showcase is a hands-on project demonstrating how to build hierarchical, multi-step AI systems using LangChain’s Deep Agents. It showcases task decomposition, planning, sub-agent delegation, and long-running workflows in a practical, real-world setup.

Notifications You must be signed in to change notification settings

bodanLabs/deepagents-showcase

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Agents Showcase

A full-stack chat application that showcases LangChain Deep Agents with a FastAPI backend and a React frontend built with assistant-ui. The backend streams responses over SSE; the frontend provides a chat UI with tool calls, reasoning, and file previews.

image

What's in this repo

  • apps/api — FastAPI service that runs a Deep Agent (OpenAI), exposes /api/chat and /api/chat/stream, and streams via Server-Sent Events.
  • apps/web — Vite + React app using assistant-ui’s LocalRuntime and a custom streaming adapter for the API.

Tech stack

Layer Stack
Backend Python 3.11+, FastAPI, LangChain, Deep Agents, OpenAI
Frontend React 18, Vite 7, TypeScript, Tailwind CSS, assistant-ui
Tooling pnpm (workspace), uv (Python), Docker Compose

Prerequisites

  • Python 3.11+ (and uv recommended)
  • Node.js 20+
  • pnpm (npm install -g pnpm)
  • OpenAI API key (for the agent)

Setup

1. Clone and install dependencies

git clone https://github.com/bodanLabs/deepagents-showcase.git
cd deepagents-showcase

2. Backend (API)

cd apps/api

Create environment file from the example and add your OpenAI key:

cp .env.example .env

Edit apps/api/.env and set at least:

  • OPENAI_API_KEY — your OpenAI API key (required)
  • OPENAI_MODEL — e.g. openai:gpt-4o-mini (optional, has default)
  • CORS_ORIGINS — e.g. http://localhost:5173 for local web dev

Create a virtual environment and install the API:

uv venv
source .venv/bin/activate   # Windows: .venv\Scripts\activate
uv pip install -e ".[dev]"

Run the API:

uvicorn app.main:app --reload --host 0.0.0.0 --port 8000

API will be at http://localhost:8000. Health check: http://localhost:8000/health.

3. Frontend (Web)

In a new terminal, from the repo root:

pnpm install
pnpm dev:web

Or from the web app directory:

cd apps/web
pnpm install
pnpm dev

App will be at http://localhost:5173. Ensure the API is running and that CORS_ORIGINS in apps/api/.env includes http://localhost:5173.

Optional: copy apps/web/.env.example to apps/web/.env if you need to change the API URL (e.g. for a different host/port).


Running with Docker

From the repo root, create apps/api/.env as above (Docker Compose uses it), then:

docker-compose up --build

The web container is built with the API URL pointing at the API service.

Environment variables

Backend (apps/api/.env)

Variable Description Example
OPENAI_API_KEY OpenAI API key (required) sk-...
OPENAI_MODEL Model used by the agent openai:gpt-4o-mini
CORS_ORIGINS Allowed origins (comma-separated) http://localhost:5173
LOG_LEVEL Logging level INFO

Frontend (apps/web/.env)

Optional. Use if the API is not at http://localhost:8000 (e.g. different port or host). See apps/web/.env.example.

Project structure

deepagents-showcase/
├── apps/
│   ├── api/                 # FastAPI + Deep Agents
│   │   ├── app/
│   │   │   ├── core/        # config, logging
│   │   │   ├── schemas/     # request/response models
│   │   │   └── services/    # chat, agent
│   │   ├── tests/
│   │   ├── .env.example
│   │   └── pyproject.toml
│   └── web/                 # Vite + React + assistant-ui
│       ├── src/
│       │   ├── components/  # assistant-ui components
│       │   ├── lib/         # SSE/streaming adapter
│       │   └── runtime/     # LocalRuntimeProvider
│       ├── .env.example
│       └── package.json
├── docker-compose.yml
├── package.json             # pnpm workspace root
└── README.md

About

deepagents-showcase is a hands-on project demonstrating how to build hierarchical, multi-step AI systems using LangChain’s Deep Agents. It showcases task decomposition, planning, sub-agent delegation, and long-running workflows in a practical, real-world setup.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published