-
-
Notifications
You must be signed in to change notification settings - Fork 40
Closed
Labels
Feature idea 🔥New feature or requestNew feature or request
Description
It thought it would be easy and similar to model_parameters.principal, but no 😢
psych::omega(mtcars)
#> Loading required namespace: GPArotation#> Omega
#> Call: psych::omega(m = mtcars)
#> Alpha: 0.88
#> G.6: 0.97
#> Omega Hierarchical: 0.57
#> Omega H asymptotic: 0.58
#> Omega Total 0.97
#>
#> Schmid Leiman Factor loadings greater than 0.2
#> g F1* F2* F3* h2 u2 p2
#> mpg- 0.58 -0.67 0.29 0.88 0.12 0.38
#> cyl 0.70 -0.61 0.28 0.96 0.04 0.52
#> disp 0.59 -0.71 0.89 0.11 0.39
#> hp 0.77 -0.31 0.23 0.36 0.87 0.13 0.68
#> drat- 0.27 -0.79 0.71 0.29 0.10
#> wt 0.43 -0.79 0.31 0.91 0.09 0.20
#> qsec- 0.81 0.50 0.95 0.05 0.70
#> vs- 0.74 -0.27 0.38 0.77 0.23 0.71
#> am- -0.89 0.81 0.19 0.00
#> gear 0.87 0.32 0.87 0.13 0.00
#> carb 0.68 0.63 0.87 0.13 0.53
#>
#> With eigenvalues of:
#> g F1* F2* F3*
#> 3.70 4.36 0.60 0.83
#>
#> general/max 0.85 max/min = 7.24
#> mean percent general = 0.38 with sd = 0.27 and cv of 0.71
#> Explained Common Variance of the general factor = 0.39
#>
#> The degrees of freedom are 25 and the fit is 1.3
#> The number of observations was 32 with Chi Square = 31.8 with prob < 0.16
#> The root mean square of the residuals is 0.02
#> The df corrected root mean square of the residuals is 0.02
#> RMSEA index = 0.14 and the 10 % confidence intervals are 0 0.181
#> BIC = -54.85
#>
#> Compare this with the adequacy of just a general factor and no group factors
#> The degrees of freedom for just the general factor are 44 and the fit is 10.25
#> The number of observations was 32 with Chi Square = 264.78 with prob < 2.7e-33
#> The root mean square of the residuals is 0.39
#> The df corrected root mean square of the residuals is 0.44
#>
#> RMSEA index = 0.448 and the 10 % confidence intervals are 0.356 0.45
#> BIC = 112.29
#>
#> Measures of factor score adequacy
#> g F1* F2* F3*
#> Correlation of scores with factors 0.87 0.97 0.60 0.84
#> Multiple R square of scores with factors 0.76 0.95 0.36 0.71
#> Minimum correlation of factor score estimates 0.52 0.90 -0.28 0.42
#>
#> Total, General and Subset omega for each subset
#> g F1* F2* F3*
#> Omega total for total scores and subscales 0.97 0.90 0.91 0.87
#> Omega general for total scores and subscales 0.57 0.31 0.69 0.60
#> Omega group for total scores and subscales 0.26 0.59 0.22 0.28
Created on 2019-10-04 by the reprex package (v0.3.0)
Metadata
Metadata
Assignees
Labels
Feature idea 🔥New feature or requestNew feature or request
