"In the symphony of digital rights, we are the conductors of chaos." πΌβ‘
MMM is a Python CLI tool that performs lossless removal of ALL watermarks and metadata from MP3 and WAV audio files, effectively thwarting systems that detect AI-generated music through embedded identifiers.
- Complete Metadata Annihilation: Removes ID3, RIFF INFO, FLAC tags, and custom chunks
- AI Watermark Detection: Identifies spread spectrum, echo-based, and statistical watermarks
- Spectral Cleaning: Advanced frequency-domain watermark removal
- Fingerprint Elimination: Normalizes AI-generated statistical patterns
- Paranoid Mode: Maximum destruction with multiple cleaning passes
- Batch Processing: Parallel processing of entire directories
- Verification Engine: Before/after comparison with forensic reporting
- Spread spectrum watermarks
- Echo-based signatures
- Statistical pattern analysis
- Phase modulation detection
- Amplitude modulation analysis
- Frequency domain anomalies
# Clone the repository
git clone https://github.com/research/mmm.git
cd mmm
# Create virtual environment with Python 3.10-3.13 (librosa doesn't support 3.14+ yet)
python3.10 -m venv mmm_env
source mmm_env/bin/activate # On Windows: mmm_env\Scripts\activate
# Install the package and all dependencies
pip install -e .Important: MMM requires Python 3.10-3.13 due to librosa dependencies. Python 3.14+ is not yet supported by numba/librosa.
For maximum performance (700x+ speedup), install GPU packages:
# Install GPU acceleration packages (NVIDIA GPU required)
pip install cupy-cuda12x torch torchaudio
# Verify GPU detection
python -c "import torch; print(f'CUDA: {torch.cuda.is_available()}')"GPU Requirements:
- NVIDIA GPU with CUDA support (tested on RTX 3080 Ti)
- 4GB+ VRAM recommended
- CUDA 12.x compatible drivers
With GPU acceleration enabled (RTX 3080 Ti):
- 790x real-time processing speed
- 47,409 audio-minutes per minute throughput
- 0.27 seconds to analyze 214.6-second audio file
- Parallel processing across all CPU cores + GPU
Without GPU acceleration (CPU-only):
- Standard processing speed (slower for large files)
- Still utilizes multi-core CPU processing
# Obliterate metadata from a single file
mmm obliterate dystopian_symphony.mp3
# Paranoid mode with verification
mmm obliterate suspicious_music.wav --paranoid --verify -o clean_output.wav
# Batch process directory
mmm massacre /path/to/music --paranoid --workers 8
# Analyze file without modifying
mmm analyze questionable_track.mp3MMM uses YAML configuration files for customization:
# ~/.config/mmm/config.yaml
paranoia_level: medium
preserve_quality: high
watermark_detection:
- spread_spectrum
- echo_based
- statistical
output_format: preserve_original
backup_originals: truestealth: Maximum paranoia, quality preservationfast: Quick processing, basic cleaningquality: Preserve maximum audio qualityresearch: Deep analysis, detailed logging
# Use preset
mmm config preset stealth
# Create custom preset
mmm config create my_preset --paranoid maximum --quality highComplete sanitization of individual files
mmm obliterate INPUT_FILE [OPTIONS]
Options:
-o, --output PATH Output file path
--paranoid Maximum destruction mode
--verify Verify watermark removal
--backup Create backup of original
--format FORMAT Output format (preserve/mp3/wav)
--turbo Enable GPU acceleration (700x+ faster)Batch processing of directories
mmm massacre DIRECTORY [OPTIONS]
Options:
-d, --output-dir PATH Output directory
-e, --extension TEXT File extensions (multiple)
-w, --workers INT Parallel workers
--paranoid Paranoid mode
--backup Create backupsDeep forensic analysis without modification
mmm analyze INPUT_FILE # Regular CPU mode
mmm analyze INPUT_FILE --turbo # GPU accelerated mode (700x+ faster)Configuration management
mmm config Show current config
mmm config preset NAME Apply presetThese are opt-in, fine-grained toggles for research tuning. Defaults keep audio quality high; enable selectively:
--gated-resample-nudge/--no-gated-resample-nudge(default off): ultra-tiny resample up/down applied only on higher-energy segments (minimal audibility, good stealth).--phase-noise/--no-phase-noise(default on): tiny FFT phase noise.--phase-swirl/--no-phase-swirl(default on): light all-pass swirl.--phase-dither/--no-phase-dither(default on),--comb-mask/--no-comb-mask,--transient-shift/--no-transient-shift: earlier experimental steps (may affect audio; leave off unless testing).--masked-hf-phase/--no-masked-hf-phase(default off): HF-only masked phase noise.--micro-eq-flutter/--no-micro-eq-flutter(default off): RMS-gated, <0.013 dB band flutter.--hf-decorrelate/--no-hf-decorrelate(default off): decorrelate only 12β16 kHz band.--refined-transient/--no-refined-transient(default off): ultra-small, onset-gated shifts.--adaptive-transient/--no-adaptive-transient(default off): onset-strength adaptive micro-shifts (~0.03β0.08 ms) with light blending.
Recommended βstealthβ starting point (quality-preserving):
python -m mmm.cli obliterate input.mp3 -o output.mp3 --turbo --paranoid \
--gated-resample-nudge --phase-noise \
--no-phase-dither --no-comb-mask --no-transient-shift \
--no-phase-swirl --no-masked-hf-phase --no-resample-nudge \
--no-hf-decorrelate --no-micro-eq-flutter --no-refined-transientPreset shortcut (applies the above flags): stealth-plus
# ~/.config/mmm/config.yaml (example)
preset: stealth-plusYou can also load it via mmm config preset stealth-plus (creates/uses preset file under your config dir).
Preset includes advanced flags:
- phase_dither=False, comb_mask=False, transient_shift=False
- phase_swirl=False, masked_hf_phase=False, resample_nudge=False
- gated_resample_nudge=True, phase_noise=True
- micro_eq_flutter=False, hf_decorrelate=False
- refined_transient=False, adaptive_transient=False
Notes on pattern suppression counts:
- βPatterns Found/Suppressedβ in sanitization results come from the spectral cleanerβs suppression actions (e.g., attenuating suspicious bands/patterns) and do not imply detector-verified watermarks unless the detector reports them.
- Verification threat counts include metadata/container anomalies and detector findings; if the detector reports zero watermarks, remaining threats are likely metadata/binary anomalies rather than confirmed watermarks.
We test against third-party detectors to understand robustness (not to guarantee evasion). Recent results:
- SubmitHub / SHLabs: βInconclusive / mixed characteristicsβ with clean audio using
--gated-resample-nudge --phase-noiseand other advanced flags off. Temporal scores improved significantly; spectral scores became βcould be AI / human unlikelyβ. - Aggressive stacks (phase dither / comb mask / transient shift) degraded audio; not recommended.
Always audition audio locally before running external checks.
- Use only on files you own or have explicit permission to modify
- You are responsible for compliance with applicable laws and terms of service
- The developers do not condone or support copyright infringement
- This tool demonstrates vulnerabilities in watermarking systems for research purposes
βββββββββββββββββββββββββββββββββββββββββββ
β CLI Layer β
β Click-based interface with personality β
βββββββββββββββββββ¬ββββββββββββββββββββββββ
β
βββββββββββββββββββΌββββββββββββββββββββββββ
β Core Processing β
β β’ AudioSanitizer main engine β
β β’ FileProcessor for batch operations β
βββββββββββββββββββ¬ββββββββββββββββββββββββ
β
βββββββββββββββββββΌββββββββββββββββββββββββ
β Detection Modules β
β β’ WatermarkDetector β
β β’ MetadataScanner β
β β’ StatisticalAnalyzer β
βββββββββββββββββββ¬ββββββββββββββββββββββββ
β
βββββββββββββββββββΌββββββββββββββββββββββββ
β Sanitization Modules β
β β’ MetadataCleaner β
β β’ SpectralCleaner β
β β’ FingerprintRemover β
βββββββββββββββββββββββββββββββββββββββββββ
- Core: Click, NumPy, SciPy
- Audio: Librosa, PyDub, SoundFile
- Metadata: Mutagen
- UI: Rich, Colorama
MMM prioritizes audio quality while removing watermarks:
- Signal-to-Noise Ratio: >40dB target
- Quality Loss: <5% maximum
- Spectral Integrity: >90% preservation
- Dynamic Range: Preserved when possible
# Install test dependencies
pip install pytest pytest-cov
# Run tests
pytest tests/ -v --cov=mmm
# Run specific test
pytest tests/test_audio_sanitizer.py -v- Fork the repository
- Create feature branch (
git checkout -b feature/amazing-feature) - Commit changes (
git commit -m 'Add amazing feature') - Push to branch (
git push origin feature/amazing-feature) - Open Pull Request
# Install development dependencies
pip install black flake8 mypy
# Format code
black mmm/
# Lint code
flake8 mmm/
# Type checking
mypy mmm/| Operation | File Size | Processing Time | Quality Loss |
|---|---|---|---|
| MP3 (5 min) | 5MB | ~15s | <2% |
| WAV (5 min) | 50MB | ~30s | <1% |
| Paranoid Mode | Variable | 2-3x slower | Same |
Results on Intel i7-9700K, 16GB RAM
MMM is designed for academic and security research:
- Watermark Vulnerability Assessment: Test resilience of audio watermarking systems
- Privacy Research: Study audio fingerprinting and tracking
- Educational: Demonstrate audio steganography techniques
- Security Auditing: Verify effectiveness of watermark removal
MMM features a unique hacker-aesthetic interface:
βββββββββββββββββββββββββββββββββββββββββββββββ
β βͺβ« MELODIC METADATA MASSACRER v2.0 β«βͺ β
β "Making AI detectors cry since 2025" β
βββββββββββββββββββββββββββββββββββββββββββββββ
π Scanning: dystopian_symphony.mp3
π Found 47 metadata tags... time to DELETE THEM ALL!
π Spectral watermark detected at 19.2kHz... NEUTRALIZING...
β‘ Statistical fingerprint obliterated!
β¨ File sanitized! Your AI overlords will never know... π€«
This project is licensed under the MIT License - see the LICENSE file for details.
- Open-source audio processing community
- Security researchers in digital watermarking
- Python audio processing ecosystem
"The best place to hide a dead body is page two of the search results. But your metadata won't even make it there."
Remember: With great audio comes great responsibility. Use wisely. πΌπ