-
Notifications
You must be signed in to change notification settings - Fork 31.6k
Description
System Info
Hi, I'm having issues loading a model (downloaded from meta) and converted using convert_llama_weights_to_hf. This is the error I am receiving: cannot access local variable 'model' where it is not associated with a value
Output of transformers-cli env
- `transformers` version: 4.49.0
- Platform: Linux-5.15.0-1072-aws-x86_64-with-glibc2.35
- Python version: 3.11.10
- Huggingface_hub version: 0.29.2
- Safetensors version: 0.5.3
- Accelerate version: 1.4.0
- Accelerate config: not found
- DeepSpeed version: not installed
- PyTorch version (GPU?): 2.6.0+cu124 (False)
- Tensorflow version (GPU?): not installed (NA)
- Flax version (CPU?/GPU?/TPU?): not installed (NA)
- Jax version: not installed
- JaxLib version: not installed
- Using distributed or parallel set-up in script?: Using Databricks Notebook, serverless cluster
Who can help?
Information
- The official example scripts
- My own modified scripts
Tasks
- An officially supported task in the
examplesfolder (such as GLUE/SQuAD, ...) - My own task or dataset (give details below)
Reproduction
Steps taken
- Downloaded Llama3.3-70B-Instruct,
llama model download --source meta --model-id Llama3.3-70B-Instruct
Files are:
checklist.chk
consolidated.00.pth
consolidated.01.pth
consolidated.02.pth
consolidated.03.pth
consolidated.04.pth
consolidated.05.pth
consolidated.06.pth
consolidated.07.pth
params.json
tokenizer.model
-
Downloaded and saved conversion script to local directory:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py -
Convert files to Hugging Face, as per as per unable to convert llama 3.3 weights to hf.py #35326.
!python convert_llama_weights_to_hf.py --input_dir /Volumes/dev/models/llama3_3_70b/llama3-3-70b/ --model_size 70B --output_dir /Volumes/dev/models/llama3_3_70b_hf --llama_version 3 --instruct
Files in output_dir:
special_tokens_map.json
tokenizer_config.json
tokenizer.json
- Attempt to load model, as per https://huggingface.co/docs/transformers/main/en/model_doc/llama3
from transformers import AutoModelForCausalLM, AutoTokenizer
hf_path = '/Volumes/dev/models/llama3_3_70b_hf/'
tokenizer = AutoTokenizer.from_pretrained(hf_path)
model = AutoModelForCausalLM.from_pretrained(hf_path)
Error:
cannot access local variable 'model' where it is not associated with a value
OSError: Error no file named pytorch_model.bin, model.safetensors, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory /Volumes/dev/models/llama3_3_70b_hf/.
File , line 4
1 from transformers import AutoModelForCausalLM, AutoTokenizer
3 tokenizer = AutoTokenizer.from_pretrained(hf_path)
----> 4 model = AutoModelForCausalLM.from_pretrained(hf_path)
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-64f42d2b-5704-4f18-af79-66f0e0b3c167/lib/python3.11/site-packages/transformers/modeling_utils.py:3808, in PreTrainedModel.from_pretrained(cls, pretrained_model_name_or_path, config, cache_dir, ignore_mismatched_sizes, force_download, local_files_only, token, revision, use_safetensors, weights_only, *model_args, **kwargs)
3803 raise EnvironmentError(
3804 f"Error no file named {_add_variant(SAFE_WEIGHTS_NAME, variant)} found in directory"
3805 f" {pretrained_model_name_or_path}."
3806 )
3807 else:
-> 3808 raise EnvironmentError(
3809 f"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {_add_variant(SAFE_WEIGHTS_NAME, variant)},"
3810 f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME + '.index'} or {FLAX_WEIGHTS_NAME} found in directory"
3811 f" {pretrained_model_name_or_path}."
3812 )
3813 elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
3814 archive_file = pretrained_model_name_or_path
Expected behavior
No error!