Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/transformers/models/auto/configuration_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@
("biogpt", "BioGptConfig"),
("bit", "BitConfig"),
("bitnet", "BitNetConfig"),
("blueberry", "BlueberryConfig"),
("blenderbot", "BlenderbotConfig"),
("blenderbot-small", "BlenderbotSmallConfig"),
("blip", "BlipConfig"),
Expand Down
4 changes: 4 additions & 0 deletions src/transformers/models/auto/modeling_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,7 @@ class _BaseModelWithGenerate(PreTrainedModel, GenerationMixin):
("autoformer", "AutoformerModel"),
("aya_vision", "AyaVisionModel"),
("bamba", "BambaModel"),
("bamba2", "Bamba2Model"),
("bark", "BarkModel"),
("bart", "BartModel"),
("beit", "BeitModel"),
Expand All @@ -68,6 +69,7 @@ class _BaseModelWithGenerate(PreTrainedModel, GenerationMixin):
("biogpt", "BioGptModel"),
("bit", "BitModel"),
("bitnet", "BitNetModel"),
("blueberry", "BlueberryModel"),
("blenderbot", "BlenderbotModel"),
("blenderbot-small", "BlenderbotSmallModel"),
("blip", "BlipModel"),
Expand Down Expand Up @@ -642,6 +644,7 @@ class _BaseModelWithGenerate(PreTrainedModel, GenerationMixin):
("bigbird_pegasus", "BigBirdPegasusForCausalLM"),
("biogpt", "BioGptForCausalLM"),
("bitnet", "BitNetForCausalLM"),
("blueberry", "BlueberryForCausalLM"),
("blenderbot", "BlenderbotForCausalLM"),
("blenderbot-small", "BlenderbotSmallForCausalLM"),
("bloom", "BloomForCausalLM"),
Expand Down Expand Up @@ -1222,6 +1225,7 @@ class _BaseModelWithGenerate(PreTrainedModel, GenerationMixin):
("bigbird_pegasus", "BigBirdPegasusForSequenceClassification"),
("biogpt", "BioGptForSequenceClassification"),
("bloom", "BloomForSequenceClassification"),
("blueberry", "BlueberryForSequenceClassification"),
("camembert", "CamembertForSequenceClassification"),
("canine", "CanineForSequenceClassification"),
("code_llama", "LlamaForSequenceClassification"),
Expand Down
1 change: 1 addition & 0 deletions src/transformers/models/auto/tokenization_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,6 +100,7 @@
("bigbird_pegasus", ("PegasusTokenizer", "PegasusTokenizerFast" if is_tokenizers_available() else None)),
("biogpt", ("BioGptTokenizer", None)),
("bitnet", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("blueberry", ("BlueberryTokenizer", "BlueberryTokenizerFast" if is_tokenizers_available() else None)),
("blenderbot", ("BlenderbotTokenizer", "BlenderbotTokenizerFast")),
("blenderbot-small", ("BlenderbotSmallTokenizer", None)),
("blip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
Expand Down
69 changes: 69 additions & 0 deletions src/transformers/models/blueberry/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Blueberry model configuration"""

from typing import TYPE_CHECKING

from ...utils import OptionalDependencyNotAvailable, _LazyModule


_import_structure = {
"configuration_blueberry": [
"BLUEBERRY_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlueberryConfig",
],
}

try:
from ...utils import is_torch_available
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_blueberry"] = [
"BlueberryForCausalLM",
"BlueberryModel",
"BlueberryPreTrainedModel",
"BlueberryForSequenceClassification",
]


if TYPE_CHECKING:
from .configuration_blueberry import BLUEBERRY_PRETRAINED_CONFIG_ARCHIVE_MAP, BlueberryConfig

try:
from ...utils import is_torch_available
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blueberry import (
BlueberryForCausalLM,
BlueberryForSequenceClassification,
BlueberryModel,
BlueberryPreTrainedModel,
)

else:
import sys

sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
extra_objects={"BLUEBERRY_PRETRAINED_CONFIG_ARCHIVE_MAP": BLUEBERRY_PRETRAINED_CONFIG_ARCHIVE_MAP},
)
176 changes: 176 additions & 0 deletions src/transformers/models/blueberry/configuration_blueberry.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,176 @@
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Blueberry model configuration"""

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)

BLUEBERRY_PRETRAINED_CONFIG_ARCHIVE_MAP = {
# "blueberry": "https://huggingface.co/dloring1988/blueberry/resolve/main/config.json",
}


class BlueberryConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BlueberryModel`]. It is used to instantiate a
blueberry model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Blueberry
[dloring1988/blueberry](https://huggingface.co/dloring1988/blueberry) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Blueberry model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`BlueberryModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining with Megatron. Please refer to [this
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP module.
use_qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to use bias in the q_proj, k_proj, and v_proj layers.

Example:

```python
>>> from transformers import BlueberryConfig, BlueberryModel

>>> # Initializing a Blueberry dloring1988/blueberry style configuration
>>> configuration = BlueberryConfig()

>>> # Initializing a model (with random weights) from the dloring1988/blueberry style configuration
>>> model = BlueberryModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "blueberry"
keys_to_ignore_at_inference = ["past_key_values"]

def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
use_qkv_bias=True,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads

# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads

self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.pretraining_tp = pretraining_tp
self.tie_word_embeddings = tie_word_embeddings
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
self.use_qkv_bias = use_qkv_bias

super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
Loading