zeta-lean: minimalistic python machine learning library built on top of numpy and matplotlib
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
docs updated docs Dec 22, 2018
examples hyperparams edit Jan 16, 2019
ztlearn eucledian norm func Jan 16, 2019
.gitignore git ignore edits Dec 18, 2018
LICENSE Initial commit Mar 8, 2018
MANIFEST.in Added setup.py Mar 12, 2018
README.rst edit readme Dec 30, 2018
setup.py update required packages Aug 16, 2018

README.rst

zeta-learn

zeta-learn is a minimalistic python machine learning library designed to deliver fast and easy model prototyping.

zeta-learn aims to provide an extensive understanding of machine learning through the use of straightforward algorithms and readily implemented examples making it a useful resource for researchers and students.

Dependencies

  • numpy >= 1.15.0
  • matplotlib >= 2.0.0

Features

  • Keras like Sequential API for building models.
  • Built on Numpy and Matplotlib.
  • Examples folder with readily implemented machine learning models.

Install

  • pip install ztlearn

Examples

Principal Component Analysis (PCA)

DIGITS Dataset - PCA

digits pca

MNIST Dataset - PCA

mnist pca

KMEANS

K-Means Clustering (4 Clusters)

k-means (4 clusters)

Convolutional Neural Network (CNN)

DIGITS Dataset Model Summary

DIGITS CNN

Input Shape: (1, 8, 8)
+---------------------+---------+--------------+
¦ LAYER TYPE          ¦  PARAMS ¦ OUTPUT SHAPE ¦
+---------------------+---------+--------------+
¦ Conv2D              ¦     320 ¦   (32, 8, 8) ¦
¦ Activation: RELU    ¦       0 ¦   (32, 8, 8) ¦
¦ Dropout             ¦       0 ¦   (32, 8, 8) ¦
¦ BatchNormalization  ¦   4,096 ¦   (32, 8, 8) ¦
¦ Conv2D              ¦  18,496 ¦   (64, 8, 8) ¦
¦ Activation: RELU    ¦       0 ¦   (64, 8, 8) ¦
¦ MaxPooling2D        ¦       0 ¦   (64, 7, 7) ¦
¦ Dropout             ¦       0 ¦   (64, 7, 7) ¦
¦ BatchNormalization  ¦   6,272 ¦   (64, 7, 7) ¦
¦ Flatten             ¦       0 ¦     (3,136,) ¦
¦ Dense               ¦ 803,072 ¦       (256,) ¦
¦ Activation: RELU    ¦       0 ¦       (256,) ¦
¦ Dropout             ¦       0 ¦       (256,) ¦
¦ BatchNormalization  ¦     512 ¦       (256,) ¦
¦ Dense               ¦   2,570 ¦        (10,) ¦
+---------------------+---------+--------------+

TOTAL PARAMETERS: 835,338

DIGITS Dataset Model Results

digits cnn results tiled

DIGITS Dataset Model Loss

digits model loss

DIGITS Dataset Model Accuracy

digits model accuracy

MNIST Dataset Model Summary

MNIST CNN

Input Shape: (1, 28, 28)
+---------------------+------------+--------------+
¦ LAYER TYPE          ¦     PARAMS ¦ OUTPUT SHAPE ¦
+---------------------+------------+--------------+
¦ Conv2D              ¦        320 ¦ (32, 28, 28) ¦
¦ Activation: RELU    ¦          0 ¦ (32, 28, 28) ¦
¦ Dropout             ¦          0 ¦ (32, 28, 28) ¦
¦ BatchNormalization  ¦     50,176 ¦ (32, 28, 28) ¦
¦ Conv2D              ¦     18,496 ¦ (64, 28, 28) ¦
¦ Activation: RELU    ¦          0 ¦ (64, 28, 28) ¦
¦ MaxPooling2D        ¦          0 ¦ (64, 27, 27) ¦
¦ Dropout             ¦          0 ¦ (64, 27, 27) ¦
¦ BatchNormalization  ¦     93,312 ¦ (64, 27, 27) ¦
¦ Flatten             ¦          0 ¦    (46,656,) ¦
¦ Dense               ¦ 11,944,192 ¦       (256,) ¦
¦ Activation: RELU    ¦          0 ¦       (256,) ¦
¦ Dropout             ¦          0 ¦       (256,) ¦
¦ BatchNormalization  ¦        512 ¦       (256,) ¦
¦ Dense               ¦      2,570 ¦        (10,) ¦
+---------------------+------------+--------------+

TOTAL PARAMETERS: 12,109,578

MNIST Dataset Model Results

mnist cnn results tiled

Regression

Linear Regression

linear regression

Polynomial Regression

polynomial regression

Elastic Regression

elastic regression