-
Notifications
You must be signed in to change notification settings - Fork 0
64. Minimum Path Sum
Jacky Zhang edited this page Oct 15, 2016
·
2 revisions
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
解题思路为Dynamic Programming。
public class Solution {
public int minPathSum(int[][] grid) {
if(grid == null || grid.length == 0 || grid[0].length == 0) return 0;
int m = grid.length;
int n = grid[0].length;
int[][] res = new int[m][n];
res[0][0] = grid[0][0];
for(int i = 1; i < m; i++) {
res[i][0] = res[i-1][0] + grid[i][0];
}
for(int j = 1; j < n; j++) {
res[0][j] = res[0][j-1] + grid[0][j];
}
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++) {
res[i][j] = Math.min(res[i-1][j], res[i][j-1]) + grid[i][j];
}
}
return res[m-1][n-1];
}
}可以把space complexity缩减为O(n)
public class Solution {
public int minPathSum(int[][] grid) {
if(grid == null || grid.length == 0 || grid[0].length == 0) return 0;
int m = grid.length;
int n = grid[0].length;
int[] dp = new int[n];
dp[0] = grid[0][0];
for(int j = 1; j < n; j++) dp[j] = dp[j-1] + grid[0][j];
for(int i = 1; i < m; i++) {
dp[0] = dp[0] + grid[i][0];
for(int j = 1; j < n; j++) {
dp[j] = Math.min(dp[j-1], dp[j]) + grid[i][j];
}
}
return dp[n-1];
}
}