Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
362 changes: 361 additions & 1 deletion _sips/sips/2017-09-20-opaque-types.md
Original file line number Diff line number Diff line change
Expand Up @@ -221,7 +221,7 @@ val l: Logarithm = 1.0

which fails to compile with a type mismatch error:

```scala
```
<console>:11: error: type mismatch;
found : Double
required: Logarithm
Expand Down Expand Up @@ -376,6 +376,366 @@ The extension methods synthesized for implicit value classes are not static. We
if the current encoding has an impact in performance, but if so, we can consider changing the
encoding of extension methods either in this proposal or in a future one.

## More examples

### Type tagging

This example focuses on using type parameters to opaque types (one of
which is a phantom type). The goal here is to be able to mark concrete
types (`S`) with arbitrary *tags* (`T`) which can be used to
distinguish them at compile-time.

```scala
package object tagging {

// Tagged[S, T] means that S is tagged with T
opaque type Tagged[S, T] = S

object Tagged {
def tag[S, T](s: S): Tagged[S, T] = s
def untag[S, T](st: Tagged[S, T]): S = st

def tags[F[_], S, T](fs: F[S]): F[Tagged[S, T]] = fs
def untags[F[_], S, T](fst: F[Tagged[S, T]]): F[S] = fst

implicit def taggedClassTag[S, T](implicit ct: ClassTag[S]): ClassTag[Tagged[S, T]] =
ct
}

type @@[S, T] = Tagged[S, T]

implicit class UntagOps[S, T](st: S @@ T) extends AnyVal {
def untag: S = Tagged.untag(st)
}

implicit class UntagsOps[F[_], S, T](fs: F[S @@ T]) extends AnyVal {
def untags: F[S] = Tagged.untags(fs)
}

implicit class TagOps[S](s: S) extends AnyVal {
def tag[T]: S @@ T = Tagged.tag(s)
}

implicit class TagsOps[F[_], S](fs: F[S]) extends AnyVal {
def tags[T]: F[S @@ T] = Tagged.tags(fs)
}

trait Meter
trait Foot
trait Fathom

val x: Double @@ Meter = (1e7).tag[Meter]
val y: Double @@ Foot = (123.0).tag[Foot]
val xs: Array[Double @@ Meter] = Array(1.0, 2.0, 3.0).tags[Meter]

val o: Ordering[Double] = implicitly
val om: Ordering[Double @@ Meter] = o.tags[Meter]
om.compare(x, x) // 0
om.compare(x, y) // does not compile
xs.min(om) // 1.0
xs.min(o) // does not compile

// uses ClassTag[Double] via 'Tagged.taggedClassTag'.
val ys = new Array[Double @@ Foot](20)
}
```

There are a few interesting things to note here.

First, as above we expect that tagging and untagging will not cause
any boxing of these values at runtime, even though `Tagged` is
generic. We also expect that the `Array[Double @@ Meter]` will be
represented by `Array[Double]` at runtime.

Second, notice that `Ordering[Double]` and `ClassTag[Double]` are not
automatically in scope for `Tagged[Double, Meter]`. Opaque types
currently need to "re-export" (or otherwise provide) their own
implicit values.

It would be possible to automatically provide `ClassTag` instances,
using an `implicit val` in the case of opaque types wrapping concrete
types (e.g.`opaque type X = Double`) and `implicit def` in cases such
as above.

### Fix-point type

Here's an interesting little example which defines the recursive
opaque type `Fix`:

```scala
package object fixed {
opaque type Fix[F_]] = F[Fix[F]]

object Fix {
def fix[F[_]](unfixed: F[Fix[F]]): Fix[F] = unfixed
def unfix[F[_]](fixed: Fix[F]): F[Fix[F]] = fixed
}

sealed abstract class TreeU[R]

type Tree = Fix[TreeU]

object TreeU {
def cata[A](t: Tree)(f: TreeU[A] => A): A =
f(Fix.unfix(t) match {
case Branch(l, r) => Branch(cata(l)(f), cata(r)(f))
case Leaf(s) => Leaf(s)
})

case class Branch[R](left: R, right: R) extends TreeU[R]
case class Leaf[R](label: String) extends TreeU[R]
}

def leaf(s: String): Tree = Fix.fix(Leaf(s))
def branch(lhs: Tree, rhs: Tree): Tree = Fix.fix(Branch(lhs, rhs))

val tree: Tree = branch(branch(leaf("a"), leaf("b")), leaf("c"))

println(tree)
// Branch(Branch(Leaf(a), Leaf(b)), Leaf(c))
}
```

This is an interesting example which is intended to show that opaque
types (unlike type aliases) have an independent existence, even within
the companion. This means that unlike type alises, `Fix[F]` should not
result in an infinite expansion in the above code.

The `Fix` type is useful to implementing recursion schemes, or just
for creating recursive structures which are parameterized on their
recursive type.

### Explicit nullable types

There have previously been proposals to provide a "zero-cost Option"
using value classes. Opaque types make this very straight-forward by
bounding the underlying type (`A`) with `AnyRef`.

```scala
package object nullable {
opaque type Nullable[A <: AnyRef] = A

object Nullable {
def apply[A <: AnyRef](a: A): Nullable[A] = a

implicit class NullableOps[A <: AnyRef](na: Nullable[A]) {
def exists(p: A => Boolean): Boolean =
na != null && p(na)
def filter(p: A => Boolean): Nullable[A] =
if (na != null && p(na)) na else null
def flatMap[B <: AnyRef](f: A => Nullable[B]): Nullable[B] =
if (na == null) null else f(na)
def forall(p: A => Boolean): Boolean =
na == null || p(na)
def getOrElse(a: => A): A =
if (na == null) a else na
def map[B <: AnyRef](f: A => B): Nullable[B] =
if (na == null) null else f(na)
def orElse(na2: => Nullable[A]): Nullable[A] =
if (na == null) na2 else na
def toOption: Option[A] =
Option(na)
}
}
}
```

This example provides most of the benefits of using `Option` at API
boundaries with libraries that use `null` (such as many Java
libraries). Unlike a value class, we can guarantee that there will
never be a wrapper around the raw values (or raw nulls).

Notice that `Nullable[Nullable[B]]` is not a valid type, because
`Nullalbe[B]` is not known to be `<: AnyRef`. This is a key difference
between a type like `Option` (which is parametric and can easily wrap
itself) and a type like `Nullable` (which only has one `null` value to
use).

### Custom instances

Currently, many libraries (including Scalding and Algebird) define
wrapper types which change the kind of aggregation used for that
type. This is useful in frameworks like MapReduce, Spark, Flink,
Storm, etc. where users describe computation in terms of mapping and
aggregation.

The following example shows how opaque types can make using these
wrappers a bit more elegant:

```scala
package object groups {
trait Semigroup[A] {
def combine(x: A, y: A): A
}

object Semigroup {
def instance[A](f: (A, A) => A): Semigroup[A] =
new Semigroup[A] {
def combine(x: A, y: A): A = f(x, y)
}
}

type Id[A] = A

trait Wrapping[F[_]] {
def wraps[G[_], A](ga: G[A]): G[F[A]]
def unwraps[G[_], A](ga: G[F[A]]): G[A]
}

abstract class Wrapper[F[_]] { self =>
def wraps[G[_], A](ga: G[A]): G[F[A]]
def unwraps[G[_], A](gfa: G[F[A]]): G[A]

final def apply[A](a: A): F[A] = wraps[Id, A](a)

implicit object WrapperWrapping extends Wrapping[F] {
def wraps[G[_], A](ga: G[A]): G[F[A]] = self.wraps(ga)
def unwraps[G[_], A](ga: G[F[A]]): G[A] = self.unwraps(ga)
}
}

opaque type First[A] = A
object First extends Wrapper[First] {
def wraps[G[_], A](ga: G[A]): G[First[A]] = ga
def unwrap[G[_], A](gfa: G[First[A]]): G[A] = gfa
implicit def firstSemigroup[A]: Semigroup[First[A]] =
Semigroup.instance((x, y) => x)
}

opaque type Last[A] = A
object Last extends Wrapper[Last] {
def wraps[G[_], A](ga: G[A]): G[Last[A]] = ga
def unwrap[G[_], A](gfa: G[Last[A]]): G[A] = gfa
implicit def lastSemigroup[A]: Semigroup[Last[A]] =
Semigroup.instance((x, y) => y)
}

opaque type Min[A] = A
object Min extends Wrapper[Min] {
def wraps[G[_], A](ga: G[A]): G[Min[A]] = ga
def unwrap[G[_], A](gfa: G[Min[A]]): G[A] = gfa
implicit def minSemigroup[A](implicit o: Ordering[A]): Semigroup[Min[A]] =
Semigroup.instance(o.min)
}

opaque type Max[A] = A
object Max extends Wrapper[Max] {
def wraps[G[_], A](ga: G[A]): G[Max[A]] = ga
def unwrap[G[_], A](gfa: G[Max[A]]): G[A] = gfa
implicit def maxSemigroup[A](implicit o: Ordering[A]): Semigroup[Max[A]] =
Semigroup.instance(o.max)
}

opaque type Plus[A] = A
object Plus extends Wrapper[Plus] {
def wraps[G[_], A](ga: G[A]): G[Plus[A]] = ga
def unwrap[G[_], A](gfa: G[Plus[A]]): G[A] = gfa
implicit def plusSemigroup[A](implicit n: Numeric[A]): Semigroup[Plus[A]] =
Semigroup.instance(n.plus)
}

opaque type Times[A] = A
object Times extends Wrapper[Times] {
def wraps[G[_], A](ga: G[A]): G[Times[A]] = ga
def unwrap[G[_], A](gfa: G[Times[A]]): G[A] = gfa
implicit def timesSemigroup[A](implicit n: Numeric[A]): Semigroup[Times[A]] =
Semigroup.instance(n.times)
}

opaque type Reversed[A] = A
object Reversed extends Wrapper[Reversed] {
def wraps[G[_], A](ga: G[A]): G[Reversed[A]] = ga
def unwrap[G[_], A](gfa: G[Reversed[A]]): G[A] = gfa
implicit def reversedOrdering[A](implicit o: Ordering[A]): Ordering[Reversed[A]] =
o.reverse
}

opaque type Unordered[A] = A
object Unordered extends Wrapper[Unordered] {
def wraps[G[_], A](ga: G[A]): G[Reversed[A]] = ga
def unwrap[G[_], A](gfa: G[Reversed[A]]): G[A] = gfa
implicit def unorderedOrdering[A]: Ordering[Unordered[A]] =
Ordering.by(_ => ())
}
}
```

The example demonstrates using an abstract class (`Wrapper`) to share
code between opaque type companion objects. Like the tagging example,
we can use two methods (`wraps` and `unwraps`) to wrap and unwrap `A`
types, even if neseted in an arbitrary context (`G[_]`). These methods
cannot be implemented in `Wrapper` because each opaque type companion
contains the only scope where its particular methods can be
implemented.

Similarly to the tagging example, these types are zero-cost wrappers
which can be used to tag how to aggregate the underlying type (for
example `Int`).

### Probability interval

Here's an example that demonstrates how opaque types can limit the
underlying type's range of values in a way that minimizes the require
error-checking:

```scala
package object prob {
opaque type Probability = Double

object Probability {
def apply(n: Double): Option[Probability] =
if (0.0 <= n && n <= 1.0) Some(n) else None

def unsafe(p: Double): Probability = {
require(0.0 <= p && p <= 1.0, s"probabilities lie in [0, 1] (got $p)")
p
}

def asDouble(p: Probability): Double = p

val Never: Probability = 0.0
val CoinToss: Probability = 0.5
val Certain: Probability = 1.0

implicit val ordering: Ordering[Probability] =
implicitly[Ordering[Double]]

implicit class ProbabilityOps(p1: Probability) extends AnyVal {
def unary_~ : Probability = Certain - p1
def &(p2: Probability): Probability = p1 * p2
def |(p2: Probability): Probability = p1 + p2 - (p1 * p2)

def isImpossible: Boolean = p1 == Never
def isCertain: Boolean = p1 == Certain

import scala.util.Random

def sample(r: Random = Random): Boolean = r.nextDouble <= p1
def toDouble: Double = p1
}

val caughtTrain = Probability.unsafe(0.3)
val missedTrain = ~caughtTrain
val caughtCab = Probability.CoinToss
val arrived = caughtTrain | (missedTrain & caughtCab)

println((1 to 5).map(_ => arrived.sample()).toList)
// List(true, true, false, true, false)
}
}
```

Outside of the `Probability` companion, we can be sure that the
underlying `Double` values fall in the interval *[0, 1]*, which means
we don't need to include error-checking code when working with
`Probability` values. We can be sure that adding this kind of
compile-time safety to a program doesn't add any additional cost
(except for the error-checking that we explicitly want).

This example is somewhat similar to `Logarithm` above. Other
properties we might want to verify at compile-time: `NonNegative`,
`Positive`, `Finite`, `Unsigned` and so on.

## Implementation notes

To implement opaque types, we need to modify three compiler phases: parser, namer and typer. At the
Expand Down