You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Quantile Regression DQN implementation for bridge fleet maintenance optimization using Markov Decision Process. Migrated from C51 distributional RL (v0.8) with 200 quantiles and Huber loss. Features: Dueling architecture, Noisy Networks, PER, N-step learning. All 6 maintenance actions show positive returns with 68-78% VaR improvement.
Multi-Equipment CBM (Condition-Based Maintenance) optimization using Deep Q-Learning with cost leveling and scenario comparison. Advanced RL system with QR-DQN, N-step learning, and parallel environments for HVAC equipment predictive maintenance.