YoloV5 segmentation NPU for the RK 3566/68/88
-
Updated
Apr 30, 2024 - C++
YoloV5 segmentation NPU for the RK 3566/68/88
YoloV6 NPU for the RK3566/68/88
Matrix multiplication on the NPU inside RK3588
rtop, a performance monitor for the Rockchips RK3566/68/88
YoloV7 NPU for the RK3566/68/88
rtop, a performance monitor for the Rockchips RK3566/68/88
YoloX NPU for the RK3566/68/88
PP YoloE NPU for the RK3566/68/88
基于RK3588的视频采集和目标检测功能 目标监测功能使用 git@github.com:airockchip/rknn-toolkit2.git ,移植了yolov6的demo实现
基于ultralytics-yolov8, 将其检测/分类/分割/姿态等任务移植到rk3588上
基于u2net网络进行简单修改使其部署到rk3588板子上
YoloV10 NPU for the RK3566/68/88
YoloV8 NPU for the RK3566/68/88
Streaming TTS based on Piper with optional RK3588 NPU support
YoloV5 NPU for the RK3566/68/88
Windows on Arm drivers for RK35xx platforms.
A high performance, high expansion, easy to use framework for AI application. 为AI应用的开发者提供一套统一的高性能、易用的编程框架,快速基于AI全栈服务、开发跨端边云的AI行业应用,支持GPU,NPU加速。
Add a description, image, and links to the rk3588 topic page so that developers can more easily learn about it.
To associate your repository with the rk3588 topic, visit your repo's landing page and select "manage topics."