

 Skip to content

 Toggle navigation

 Sign in

 	

 Product

 	

 Actions

 Automate any workflow

	

 Packages

 Host and manage packages

	

 Security

 Find and fix vulnerabilities

	

 Codespaces

 Instant dev environments

	

 Copilot

 Write better code with AI

	

 Code review

 Manage code changes

	

 Issues

 Plan and track work

	

 Discussions

 Collaborate outside of code

 Explore
 	

 All features

	

 Documentation

	

 GitHub Skills

	

 Blog

	

 Solutions

 For
 	

 Enterprise

	

 Teams

	

 Startups

	

 Education

 By Solution
 	

 CI/CD & Automation

	

 DevOps

	

 DevSecOps

 Resources
 	

 Learning Pathways

	

 White papers, Ebooks, Webinars

	

 Customer Stories

	

 Partners

	

 Open Source

 	

 GitHub Sponsors

 Fund open source developers

 	

 The ReadME Project

 GitHub community articles

 Repositories
 	

 Topics

	

 Trending

	

 Collections

	
 Pricing

 Search or jump to...

 Search code, repositories, users, issues, pull requests...

 Search

 Clear

 Search syntax tips

 Provide feedback

 We read every piece of feedback, and take your input very seriously.

 Include my email address so I can be contacted

 Cancel

 Submit feedback

 Saved searches

 Use saved searches to filter your results more quickly

 Name

 Query

 To see all available qualifiers, see our documentation.

 Cancel

 Create saved search

 Sign in

 Sign up

 You signed in with another tab or window. Reload to refresh your session.
 You signed out in another tab or window. Reload to refresh your session.
 You switched accounts on another tab or window. Reload to refresh your session.

Dismiss alert

 {{ message }}

 pypdfium2-team

 /

 pypdfium2

 Public

 	

Notifications

	

Fork
 12

	

 Star
 249

	

 Python bindings to PDFium

 pypdfium2.readthedocs.io/

 249
 stars

 12
 forks

 Branches

 Tags

 Activity

 Star

Notifications

 	

 Code

	

 Issues
 3

	

 Pull requests
 0

	

 Discussions

	

 Actions

	

 Projects
 0

	

 Security

	

 Insights

Additional navigation options

 	

 Code

	

 Issues

	

 Pull requests

	

 Discussions

	

 Actions

	

 Projects

	

 Security

	

 Insights

 pypdfium2-team/pypdfium2

 This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

 main

BranchesTags

Go to file

Code

Folders and files
	Name	Name	Last commit message
	Last commit date

	Latest commit

History
1,921 Commits

	
.github

	
.github

	
	

	
.reuse

	
.reuse

	
	

	
LICENSES

	
LICENSES

	
	

	
autorelease

	
autorelease

	
	

	
conda

	
conda

	
	

	
docs

	
docs

	
	

	
req

	
req

	
	

	
setupsrc/pypdfium2_setup

	
setupsrc/pypdfium2_setup

	
	

	
sourcebuild/patches

	
sourcebuild/patches

	
	

	
src

	
src

	
	

	
tests

	
tests

	
	

	
tests_old

	
tests_old

	
	

	
.gitignore

	
.gitignore

	
	

	
.readthedocs.yaml

	
.readthedocs.yaml

	
	

	
MANIFEST.in

	
MANIFEST.in

	
	

	
README.md

	
README.md

	
	

	
pyproject.toml

	
pyproject.toml

	
	

	
run

	
run

	
	

	
setup.cfg

	
setup.cfg

	
	

	
setup.py

	
setup.py

	
	

	View all files

Repository files navigation
	README

pypdfium2

pypdfium2 is an ABI-level Python 3 binding to PDFium, a powerful and liberal-licensed library for PDF rendering, inspection, manipulation and creation.

It is built with ctypesgen and external PDFium binaries.
The custom setup infrastructure provides a seamless packaging and installation process. A wide range of platforms is supported with pre-built packages.

pypdfium2 includes helpers to simplify common use cases, while the raw PDFium/ctypes API remains accessible as well.

Installation

	
From PyPI 🔗 (recommended)

python -m pip install -U pypdfium2

This will use a pre-built wheel package, the easiest way of installing pypdfium2.

	
From source 🔗

	
Dependencies:

	System: git, C pre-processor (gcc/clang - alternatively, specify the command to envoke via $CPP)
	Python: ctypesgen (pypdfium2-team fork), wheel, setuptools. Usually installed automatically.

	
Get the code

git clone "https://github.com/pypdfium2-team/pypdfium2.git"
cd pypdfium2/

	
With pre-built binary 🔗

In the pypdfium2/ directory
python -m pip install -v .

A binary is downloaded implicitly from pdfium-binaries and bundled into pypdfium2.

	
With self-built binary 🔗

call build script with --help to list options
python setupsrc/pypdfium2_setup/build_pdfium.py
PDFIUM_PLATFORM="sourcebuild" python -m pip install -v .

Building PDFium may take a long time, as it comes with its bundled toolchain and deps, rather than taking them from the system.1
However, we can at least provide the --use-syslibs option to build against system-provided runtime libraries.

	
With system-provided binary 🔗

Substitute $PDFIUM_VER with the system pdfium's build version.
For ABI safety reasons, you'll want to make sure `$PDFIUM_VER` is correct and the bindings are rebuilt whenever system pdfium is updated.
PDFIUM_PLATFORM="system:$PDFIUM_VER" python -m pip install -v .

Link against external pdfium instead of bundling it.
Note, this is basically a high-level convenience entry point to internal bindings generation, and intended for end users. Therefore it is less flexible, supporting only the "simple case" for now.
For more sohpisticated use cases that need passing custom parameters to ctypesgen (e.g. runtime libdirs / headers / feature flags), consider caller-provided data files.

	With caller-provided data files 🔗 (this is expected to work offline)
Call ctypesgen (see --help or packaging_base.py::run_ctypesgen() for further options)
Reminder: you'll want to use the pypdfium2-team fork of ctypesgen
ctypesgen --library pdfium --runtime-libdirs $MY_LIBDIRS --headers $MY_INCLUDE_DIR/fpdf*.h -o src/pypdfium2_raw/bindings.py [-D $MY_FLAGS]

Write the version file (fill the placeholders).
Note, this is not a mature interface yet and might change!
major/minor/build/patch: integers forming the pdfium version being packaged
n_commits/hash: git describe like post-tag info (0/null for release commit)
origin: a string to identify the build, consisting of binary source and package provider (e.g. "system/debian", "pdfium-binaries/debian")
flags: a comma-delimited list of pdfium feature flag strings (e.g. "V8", "XFA") - may be empty for default build
cat >"src/pypdfium2_raw/version.json" <<END
{
 "major": $PDFIUM_MAJOR,
 "minor": $PDFIUM_MINOR,
 "build": $PDFIUM_BUILD,
 "patch": $PDFIUM_PATCH,
 "n_commits": $POST_TAG_COMMIT_COUNT,
 "hash": $POST_TAG_HASH,
 "origin": "$ORIGIN",
 "flags": [$MY_FLAGS]
}
END

optional: copy in a binary if bundling
cp "$BINARY_PATH" src/pypdfium2_raw/libpdfium.so

Finally, install
set $MY_PLATFORM to "system" if building against system pdfium, "auto" or the platform name otherwise
PDFIUM_PLATFORM='prepared!$MY_PLATFORM:$PDFIUM_BUILD' python -m pip install --no-build-isolation -v .

See Setup Magic for details.

Support for source installs (esp. with self-built/system pdfium) is limited, as their integrity depends somewhat on a correctly acting caller.

Installing an sdist does not implicitly trigger a sourcebuild if no pre-built binary is available. It is preferred to let callers decide consciously what to do, and run the build script without pip encapsulation.

Relevant pip options:

	-v: Verbose logging output. Useful for debugging.
	-e: Install in editable mode, so the installation points to the source tree. This way, changes directly take effect without needing to re-install. Recommended for development.
	--no-build-isolation: Do not isolate setup in a virtual env; use the main env instead. This renders pyproject.toml [build-system] inactive, setup deps must be prepared by caller. Useful to install custom versions of setup deps, or as speedup when installing repeatedly.

	
From Conda 🔗

Beware: Any conda packages/recipes of pypdfium2 or pdfium-binaries that might be provided by other distributors, including anaconda/main or conda-forge default channels, are unofficial.

	
To install

With permanent channel config (encouraged):

conda config --add channels bblanchon
conda config --add channels pypdfium2-team
conda config --set channel_priority strict
conda install pypdfium2-team::pypdfium2_helpers

Alternatively, with temporary channel config:

conda install pypdfium2-team::pypdfium2_helpers --override-channels -c pypdfium2-team -c bblanchon

Adding the channels permanently and tightening priority is encouraged to include pypdfium2 in conda update by default, and to avoid accidentally replacing the install with a different channel. (If desired, you may limit the channel config to the current environment by adding --env.)
Otherwise, you should be cautious when making changes to the environment.

	
To depend on pypdfium2 in a conda-build recipe

requirements:
 run:
 - pypdfium2-team::pypdfium2_helpers

You'll want to have downstream callers handle the custom channels as shown above, otherwise conda will not be able to satisfy requirements.

	
To set up channels in a GH workflow

- name: ...
 uses: conda-incubator/setup-miniconda@v3
 with:
 # ... your options
 channels: pypdfium2-team,bblanchon
 channel-priority: strict

This is just a suggestion, you can also call conda config manually, or pass channels on command basis using -c, as discussed above.

	
To verify the sources

conda list --show-channel-urls "pypdfium2|pdfium-binaries"
conda config --show-sources

The table should show pypdfium2-team and bblanchon in the channels column.
If added permanently, the config should also include these channels, ideally with top priority.
Please check this before reporting any issue with a conda install of pypdfium2.

Note: Conda packages are normally managed using recipe feedstocks driven by third parties, in a Linux repository like fashion. However, with some quirks it is also possible to do conda packaging within the original project and publish to a custom channel, which is what pypdfium2-team does, and the above instructions are referring to.

	
Unofficial packages 🔗

The authors of this project have no control over and are not responsible for possible third-party builds of pypdfium2, and we do not support them. Please use the official packages where possible.
If you have an issue with a third-party build, either contact your distributor, or try to reproduce with an official build.

Do not expect us to help with the creation of unofficial builds or add/change code for downstream setup tasks. Related issues or PRs may be closed without further notice if we don't see fit for upstream.

If you are a third-party distributor, please point out clearly and visibly in the description that your package is unofficial, i.e. not affiliated with or endorsed by pypdfium2 team.

Runtime Dependencies

As of this writing, pypdfium2 does not need any mandatory runtime dependencies apart from Python itself.

However, some optional support model features require additional packages:

	Pillow (module name PIL) is a pouplar imaging library for Python. pypdfium2 provides convenience methods to translate between raw bitmap buffers and PIL images.
	NumPy is a library for scientific computing. Similar to Pillow, pypdfium2 provides helpers to get a numpy array view of a raw bitmap.

Setup Magic

As pypdfium2 requires a C extension and has custom setup code, there are some special features to consider. Note, the APIs below may change any time and are mostly of internal interest.

	
Binaries are stored in platform-specific sub-directories of data/, along with bindings and version information.

	
$PDFIUM_PLATFORM defines which binary to include on setup.

	Format spec: [$PLATFORM][-v8][:$VERSION] ([] = segments, $CAPS = variables).
	Examples: auto, auto:5975 auto-v8:5975 (auto may be substituted by an explicit platform name, e.g. linux_x64).
	Platform:
	If unset or auto, the host platform is detected and a corresponding binary will be selected.
	If an explicit platform identifier (e.g. linux_x64, darwin_arm64, ...), binaries for the requested platform will be used.2
	If system, bind against system-provided pdfium instead of embedding a binary. Version must be given explicitly so matching bindings can be generated.
	If sourcebuild, binaries will be taken from data/sourcebuild/, assuming a prior run of build_pdfium.py.
	If sdist, no platform-dependent files will be included, so as to create a source distribution.
sourcebuild and sdist are standalone, they cannot be followed by additional specifiers.

	V8: If given, use the V8 (JavaScript) and XFA enabled pdfium binaries. Otherwise, use the regular (non-V8) binaries.
	Version: If given, use the specified pdfium-binaries release. Otherwise, use the latest one.
	It is possible to prepend prepared! to install with existing platform files instead of generating on the fly; the value will be used for metadata / file inclusion. This can be helpful when installing in an isolated env where ctypesgen is not available, but it is not desirable to use the reference bindings (e.g. conda).

	
$PYPDFIUM_MODULES=[raw,helpers] defines the modules to include. Metadata adapts dynamically.

	May be used by packagers to decouple raw bindings and helpers, which may be relevant if packaging against system pdfium.
	Would also allow to install only the raw module without helpers, or only helpers with a custom raw module.

	
$PDFIUM_BINDINGS=reference allows to override ctypesgen and use the reference bindings file autorelease/bindings.py instead.

	This is a convenience option to get pypdfium2 installed from source even if a working ctypesgen is not available in the install env.
	Warning: This may not be ABI-safe. Please make sure binary/bindings build headers match to avoid ABI issues.

Usage

Support model

Here are some examples of using the support model API.

	
Import the library

import pypdfium2 as pdfium

	
Open a PDF using the helper class PdfDocument (supports file path strings, bytes, and byte buffers)

pdf = pdfium.PdfDocument("./path/to/document.pdf")
version = pdf.get_version() # get the PDF standard version
n_pages = len(pdf) # get the number of pages in the document
page = pdf[0] # load a page

	
Render the page

bitmap = page.render(
 scale = 1, # 72dpi resolution
 rotation = 0, # no additional rotation
 # ... further rendering options
)
pil_image = bitmap.to_pil()
pil_image.show()

	
Try some page methods

Get page dimensions in PDF canvas units (1pt->1/72in by default)
width, height = page.get_size()
Set the absolute page rotation to 90° clockwise
page.set_rotation(90)

Locate objects on the page
for obj in page.get_objects():
 print(obj.level, obj.type, obj.get_pos())

	
Extract and search text

Load a text page helper
textpage = page.get_textpage()

Extract text from the whole page
text_all = textpage.get_text_range()
Extract text from a specific rectangular area
text_part = textpage.get_text_bounded(left=50, bottom=100, right=width-50, top=height-100)

Locate text on the page
searcher = textpage.search("something", match_case=False, match_whole_word=False)
This returns the next occurrence as (char_index, char_count), or None if not found
first_occurrence = searcher.get_next()

	
Read the table of contents

for item in pdf.get_toc():
 state = "*" if item.n_kids == 0 else "-" if item.is_closed else "+"
 target = "?" if item.page_index is None else item.page_index+1
 print(
 " " * item.level +
 "[%s] %s -> %s # %s %s" % (
 state, item.title, target, item.view_mode, item.view_pos,
)
)

	
Create a new PDF with an empty A4 sized page

pdf = pdfium.PdfDocument.new()
width, height = (595, 842)
page_a = pdf.new_page(width, height)

	
Include a JPEG image in a PDF

pdf = pdfium.PdfDocument.new()

image = pdfium.PdfImage.new(pdf)
image.load_jpeg("./tests/resources/mona_lisa.jpg")
width, height = image.get_size()

matrix = pdfium.PdfMatrix().scale(width, height)
image.set_matrix(matrix)

page = pdf.new_page(width, height)
page.insert_obj(image)
page.gen_content()

	
Save the document

PDF 1.7 standard
pdf.save("output.pdf", version=17)

Raw PDFium API

While helper classes conveniently wrap the raw PDFium API, it may still be accessed directly and is available in the namespace pypdfium2.raw. Lower-level helpers that may aid with using the raw API are provided in pypdfium2.internal.

import pypdfium2.raw as pdfium_c
import pypdfium2.internal as pdfium_i

Since PDFium is a large library, many components are not covered by helpers yet. You may seamlessly interact with the raw API while still using helpers where available. When used as ctypes function parameter, helper objects automatically resolve to the underlying raw object (but you may still access it explicitly if desired):

permission_flags = pdfium_c.FPDF_GetDocPermission(pdf.raw) # explicit
permission_flags = pdfium_c.FPDF_GetDocPermission(pdf) # implicit

For PDFium docs, please look at the comments in its public header files.3
A large variety of examples on how to interface with the raw API using ctypes is already provided with support model source code.
Nonetheless, the following guide may be helpful to get started with the raw API, especially for developers who are not familiar with ctypes yet.

	In general, PDFium functions can be called just like normal Python functions.
However, parameters may only be passed positionally, i. e. it is not possible to use keyword arguments.
There are no defaults, so you always need to provide a value for each argument.
arguments: filepath (bytes), password (bytes|None)
null-terminate filepath and encode as UTF-8
pdf = pdfium_c.FPDF_LoadDocument((filepath+"\x00").encode("utf-8"), None)

This is the underlying bindings declaration,4 which loads the function from the binary and
contains the information required to convert Python types to their C equivalents.
if _libs["pdfium"].has("FPDF_LoadDocument", "cdecl"):
 FPDF_LoadDocument = _libs["pdfium"].get("FPDF_LoadDocument", "cdecl")
 FPDF_LoadDocument.argtypes = [FPDF_STRING, FPDF_BYTESTRING]
 FPDF_LoadDocument.restype = FPDF_DOCUMENT

Python bytes are converted to FPDF_STRING by ctypes autoconversion.
When passing a string to a C function, it must always be null-terminated, as the function merely receives a pointer to the first item and then continues to read memory until it finds a null terminator.

	
While some functions are quite easy to use, things soon get more complex.
First of all, function parameters are not only used for input, but also for output:

Initialise an integer object (defaults to 0)
c_version = ctypes.c_int()
Let the function assign a value to the c_int object, and capture its return code (True for success, False for failure)
ok = pdfium_c.FPDF_GetFileVersion(pdf, c_version)
If successful, get the Python int by accessing the `value` attribute of the c_int object
Otherwise, set the variable to None (in other cases, it may be desired to raise an exception instead)
version = c_version.value if ok else None

	
If an array is required as output parameter, you can initialise one like this (in general terms):

long form
array_type = (c_type * array_length)
array_object = array_type()
short form
array_object = (c_type * array_length)()

Example: Getting view mode and target position from a destination object returned by some other function.

(Assuming `dest` is an FPDF_DEST)
n_params = ctypes.c_ulong()
Create a C array to store up to four coordinates
view_pos = (pdfium_c.FS_FLOAT * 4)()
view_mode = pdfium_c.FPDFDest_GetView(dest, n_params, view_pos)
Convert the C array to a Python list and cut it down to the actual number of coordinates
view_pos = list(view_pos)[:n_params.value]

	
For string output parameters, callers needs to provide a sufficiently long, pre-allocated buffer.
This may work differently depending on what type the function requires, which encoding is used, whether the number of bytes or characters is returned, and whether space for a null terminator is included or not. Carefully review the documentation for the function in question to fulfill its requirements.

Example A: Getting the title string of a bookmark.

(Assuming `bookmark` is an FPDF_BOOKMARK)
First call to get the required number of bytes (not characters!), including space for a null terminator
n_bytes = pdfium_c.FPDFBookmark_GetTitle(bookmark, None, 0)
Initialise the output buffer
buffer = ctypes.create_string_buffer(n_bytes)
Second call with the actual buffer
pdfium_c.FPDFBookmark_GetTitle(bookmark, buffer, n_bytes)
Decode to string, cutting off the null terminator
Encoding: UTF-16LE (2 bytes per character)
title = buffer.raw[:n_bytes-2].decode("utf-16-le")

Example B: Extracting text in given boundaries.

(Assuming `textpage` is an FPDF_TEXTPAGE and the boundary variables are set)
Store common arguments for the two calls
args = (textpage, left, top, right, bottom)
First call to get the required number of characters (not bytes!) - a possible null terminator is not included
n_chars = pdfium_c.FPDFText_GetBoundedText(*args, None, 0)
If no characters were found, return an empty string
if n_chars <= 0:
 return ""
Calculate the required number of bytes (UTF-16LE encoding again)
n_bytes = 2 * n_chars
Initialise the output buffer - this function can work without null terminator, so skip it
buffer = ctypes.create_string_buffer(n_bytes)
Re-interpret the type from char to unsigned short as required by the function
buffer_ptr = ctypes.cast(buffer, ctypes.POINTER(ctypes.c_ushort))
Second call with the actual buffer
pdfium_c.FPDFText_GetBoundedText(*args, buffer_ptr, n_chars)
Decode to string (You may want to pass `errors="ignore"` to skip possible errors in the PDF's encoding)
text = buffer.raw.decode("utf-16-le")

	
Not only are there different ways of string output that need to be handled according to the requirements of the function in question.
String input, too, can work differently depending on encoding and type.
We have already discussed FPDF_LoadDocument(), which takes a UTF-8 encoded string as char *.
A different examples is FPDFText_FindStart(), which needs a UTF-16LE encoded string, given as unsigned short *:

(Assuming `text` is a str and `textpage` an FPDF_TEXTPAGE)
Add the null terminator and encode as UTF-16LE
enc_text = (text + "\x00").encode("utf-16-le")
cast `enc_text` to a c_ushort pointer
text_ptr = ctypes.cast(enc_text, ctypes.POINTER(ctypes.c_ushort))
search = pdfium_c.FPDFText_FindStart(textpage, text_ptr, 0, 0)

	
Leaving strings, let's suppose you have a C memory buffer allocated by PDFium and wish to read its data.
PDFium will provide you with a pointer to the first item of the byte array.
To access the data, you'll want to re-interpret the pointer using ctypes.cast() to encompass the whole array:

(Assuming `bitmap` is an FPDF_BITMAP and `size` is the expected number of bytes in the buffer)
buffer_ptr = pdfium_c.FPDFBitmap_GetBuffer(bitmap)
buffer_ptr = ctypes.cast(buffer_ptr, ctypes.POINTER(ctypes.c_ubyte * size))
Buffer as ctypes array (referencing the original buffer, will be unavailable as soon as the bitmap is destroyed)
c_array = buffer_ptr.contents
Buffer as Python bytes (independent copy)
data = bytes(c_array)

	
Writing data from Python into a C buffer works in a similar fashion:

(Assuming `buffer_ptr` is a pointer to the first item of a C buffer to write into,
`size` the number of bytes it can store, and `py_buffer` a Python byte buffer)
buffer_ptr = ctypes.cast(buffer_ptr, ctypes.POINTER(ctypes.c_char * size))
Read from the Python buffer, starting at its current position, directly into the C buffer
(until the target is full or the end of the source is reached)
n_bytes = py_buffer.readinto(buffer_ptr.contents) # returns the number of bytes read

	
If you wish to check whether two objects returned by PDFium are the same, the is operator won't help because ctypes does not have original object return (OOR), i. e. new, equivalent Python objects are created each time, although they might represent one and the same C object.5
That's why you'll want to use ctypes.addressof() to get the memory addresses of the underlying C object.
For instance, this is used to avoid infinite loops on circular bookmark references when iterating through the document outline:

(Assuming `pdf` is an FPDF_DOCUMENT)
seen = set()
bookmark = pdfium_c.FPDFBookmark_GetFirstChild(pdf, None)
while bookmark:
 # bookmark is a pointer, so we need to use its `contents` attribute to get the object the pointer refers to
 # (otherwise we'd only get the memory address of the pointer itself, which would result in random behaviour)
 address = ctypes.addressof(bookmark.contents)
 if address in seen:
 break # circular reference detected
 else:
 seen.add(address)
 bookmark = pdfium_c.FPDFBookmark_GetNextSibling(pdf, bookmark)

	
In many situations, callback functions come in handy.6 Thanks to ctypes, it is seamlessly possible to use callbacks across Python/C language boundaries.

Example: Loading a document from a Python buffer. This way, file access can be controlled in Python while the whole data does not need to be in memory at once.

import os

Factory class to create callable objects holding a reference to a Python buffer
class _reader_class:

 def __init__(self, py_buffer):
 self.py_buffer = py_buffer

 def __call__(self, _, position, p_buf, size):
 # Write data from Python buffer into C buffer, as explained before
 buffer_ptr = ctypes.cast(p_buf, ctypes.POINTER(ctypes.c_char * size))
 self.py_buffer.seek(position)
 self.py_buffer.readinto(buffer_ptr.contents)
 return 1 # non-zero return code for success

(Assuming py_buffer is a Python file buffer, e. g. io.BufferedReader)
Get the length of the buffer
py_buffer.seek(0, os.SEEK_END)
file_len = py_buffer.tell()
py_buffer.seek(0)

Set up an interface structure for custom file access
fileaccess = pdfium_c.FPDF_FILEACCESS()
fileaccess.m_FileLen = file_len

Assign the callback, wrapped in its CFUNCTYPE
fileaccess.m_GetBlock = type(fileaccess.m_GetBlock)(_reader_class(py_buffer))

Finally, load the document
pdf = pdfium_c.FPDF_LoadCustomDocument(fileaccess, None)

	
When using the raw API, special care needs to be taken regarding object lifetime, considering that Python may garbage collect objects as soon as their reference count reaches zero. However, the interpreter has no way of magically knowing how long the underlying resources of a Python object might still be needed on the C side, so measures need to be taken to keep such objects referenced until PDFium does not depend on them anymore.

If resources need to remain valid after the time of a function call, PDFium docs usually indicate this clearly. Ignoring requirements on object lifetime will lead to memory corruption (commonly resulting in a segfault).

For instance, the docs on FPDF_LoadCustomDocument() state that

The application must keep the file resources |pFileAccess| points to valid until the returned FPDF_DOCUMENT is closed. |pFileAccess| itself does not need to outlive the FPDF_DOCUMENT.

This means that the callback function and the Python buffer need to be kept alive as long as the FPDF_DOCUMENT is used.
This can be achieved by referencing these objects in an accompanying class, e. g.

class PdfDataHolder:

 def __init__(self, buffer, function):
 self.buffer = buffer
 self.function = function

 def close(self):
 # Make sure both objects remain available until this function is called
 # No-op id() call to denote that the object needs to stay in memory up to this point
 id(self.function)
 self.buffer.close()

... set up an FPDF_FILEACCESS structure

(Assuming `py_buffer` is the buffer and `fileaccess` the FPDF_FILEACCESS interface)
data_holder = PdfDataHolder(py_buffer, fileaccess.m_GetBlock)
pdf = pdfium_c.FPDF_LoadCustomDocument(fileaccess, None)

... work with the pdf

Close the PDF to free resources
pdfium_c.FPDF_CloseDocument(pdf)
Close the data holder, to keep the object itself and thereby the objects it
references alive up to this point, as well as to release the buffer
data_holder.close()

	
Finally, let's finish with an example how to render the first page of a document to a PIL image in RGBA color format.

import math
import ctypes
import os.path
import PIL.Image
import pypdfium2.raw as pdfium_c

Load the document
filepath = os.path.abspath("tests/resources/render.pdf")
pdf = pdfium_c.FPDF_LoadDocument((filepath+"\x00").encode("utf-8"), None)

Check page count to make sure it was loaded correctly
page_count = pdfium_c.FPDF_GetPageCount(pdf)
assert page_count >= 1

Load the first page and get its dimensions
page = pdfium_c.FPDF_LoadPage(pdf, 0)
width = math.ceil(pdfium_c.FPDF_GetPageWidthF(page))
height = math.ceil(pdfium_c.FPDF_GetPageHeightF(page))

Create a bitmap
(Note, pdfium is faster at rendering transparency if we use BGRA rather than BGRx)
use_alpha = pdfium_c.FPDFPage_HasTransparency(page)
bitmap = pdfium_c.FPDFBitmap_Create(width, height, int(use_alpha))
Fill the whole bitmap with a white background
The color is given as a 32-bit integer in ARGB format (8 bits per channel)
pdfium_c.FPDFBitmap_FillRect(bitmap, 0, 0, width, height, 0xFFFFFFFF)

Store common rendering arguments
render_args = (
 bitmap, # the bitmap
 page, # the page
 # positions and sizes are to be given in pixels and may exceed the bitmap
 0, # left start position
 0, # top start position
 width, # horizontal size
 height, # vertical size
 0, # rotation (as constant, not in degrees!)
 pdfium_c.FPDF_LCD_TEXT | pdfium_c.FPDF_ANNOT, # rendering flags, combined with binary or
)

Render the page
pdfium_c.FPDF_RenderPageBitmap(*render_args)

Get a pointer to the first item of the buffer
buffer_ptr = pdfium_c.FPDFBitmap_GetBuffer(bitmap)
Re-interpret the pointer to encompass the whole buffer
buffer_ptr = ctypes.cast(buffer_ptr, ctypes.POINTER(ctypes.c_ubyte * (width * height * 4)))

Create a PIL image from the buffer contents
img = PIL.Image.frombuffer("RGBA", (width, height), buffer_ptr.contents, "raw", "BGRA", 0, 1)
Save it as file
img.save("out.png")

Free resources
pdfium_c.FPDFBitmap_Destroy(bitmap)
pdfium_c.FPDF_ClosePage(page)
pdfium_c.FPDF_CloseDocument(pdf)

Command-line Interface

pypdfium2 also ships with a simple command-line interface, providing access to key features of the support model in a shell environment (e. g. rendering, content extraction, document inspection, page rearranging, ...).

The primary motivation behind this is to have a nice testing interface, but it may be helpful in a variety of other situations as well.
Usage should be largely self-explanatory, assuming a minimum of familiarity with the command-line.

Licensing

PDFium and pypdfium2 are available by the terms and conditions of either Apache-2.0 or BSD-3-Clause, at your choice.
Various other open-source licenses apply to dependencies bundled with PDFium. Verbatim copies of their respective licenses are contained in the file LicenseRef-PdfiumThirdParty.txt, which also has to be shipped with binary redistributions.
Documentation and examples of pypdfium2 are licensed under CC-BY-4.0.

pypdfium2 complies with the reuse standard by including SPDX headers in source files, and license information for data files in .reuse/dep5.

To the author's knowledge, pypdfium2 is one of the rare Python libraries that are capable of PDF rendering while not being covered by copyleft licenses (such as the GPL).7

As of early 2023, a single developer is author and rightsholder of the code base (apart from a few minor code contributions).

Issues

While using pypdfium2, you might encounter bugs or missing features.
In this case, feel free to open an issue or discuss thread. If applicable, include details such as tracebacks, OS and CPU type, as well as the versions of pypdfium2 and used dependencies.
However, please note our response policy.

Roadmap:

	pypdfium2
	Issues panel: Initial bug reports and feature requests. May need to be transferred to dependencies.
	Discussions page: General questions and suggestions.

	PDFium
	Bug tracker: Issues in PDFium.
Beware: The bridge between Python and C increases the probability of integration issues or API misuse. The symptoms can often make it look like a PDFium bug while it is not.
	Mailing list: Questions regarding PDFium usage.

	pdfium-binaries: Binary builder.
	ctypesgen: Bindings generator.

Known limitations

Incompatibility with CPython 3.7.6 and 3.8.1

pypdfium2 built with mainstream ctypesgen cannot be used with releases 3.7.6 and 3.8.1 of the CPython interpreter due to a regression that broke ctypesgen-created string handling code.

Since version 4, pypdfium2 is built with a patched fork of ctypesgen that removes ctypesgen's problematic string code.

Risk of unknown object lifetime violations

As outlined in the raw API section, it is essential that Python-managed resources remain available as long as they are needed by PDFium.

The problem is that the Python interpreter may garbage collect objects with reference count zero at any time, so an unreferenced but still required object may either by chance stay around long enough or disappear too soon, resulting in non-deterministic memory issues that are hard to debug.
If the timeframe between reaching reference count zero and removal is sufficiently large and roughly consistent across different runs, it is even possible that mistakes regarding object lifetime remain unnoticed for a long time.

Although we intend to develop helpers carefully, it cannot be fully excluded that unknown object lifetime violations are still lurking around somewhere, especially if unexpected requirements were not documented by the time the code was written.

Missing raw PDF access

As of this writing, PDFium's public interface does not provide access to the raw PDF data structure (see issue 1694). It does not expose APIs to read/write PDF dictionaries, streams, name/number trees, etc. Instead, it merely offers a predefined set of abstracted functions. This considerably limits the library's potential, compared to other products such as pikepdf.

Limitations of ABI bindings

PDFium's non-public backend would provide extended capabilities, including raw access, but it is not exported into the ABI and written in C++ (not pure C), so we cannot use it with ctypes. This means it's out of scope for this project.

Also, while ABI bindings tend to be more convenient, they have some technical drawbacks compared to API bindings (see e.g. 1, 2)

Development

Contributions

We may accept contributions, but only if our code quality expectations are met.

Policy:

	We may not respond to your issue or PR.
	We may close an issue or PR without much feedback.
	We may lock discussions or contributions if our attention is getting DDOSed.
	We may not provide much usage support.

Long lines

The pypdfium2 codebase does not hard wrap long lines.
It is recommended to set up automatic word wrap in your text editor, e.g. VS Code:

editor.wordWrap = bounded
editor.wordWrapColumn = 100

Docs

pypdfium2 provides API documentation using Sphinx, which can be rendered to various formats, including HTML:

sphinx-build -b html ./docs/source ./docs/build/html/
./run build # short alias

Built docs are primarily hosted on readthedocs.org.
It may be configured using a .readthedocs.yaml file (see instructions), and the administration page on the web interface.
RTD supports hosting multiple versions, so we currently have one linked to the main branch and another to stable.
New builds are automatically triggered by a webhook whenever you push to a linked branch.

Additionally, one doc build can also be hosted on GitHub Pages.
It is implemented with a CI workflow, which is supposed to be triggered automatically on release.
This provides us with full control over the build env and the used commands, whereas RTD may be less liberal in this regard.

Testing

pypdfium2 contains a small test suite to verify the library's functionality. It is written with pytest:

./run test

Note that ...

	you can pass -sv to get more detailed output.
	$DEBUG_AUTOCLOSE=1 may be set to get debugging information on automatic object finalization.

To get code coverage statistics, you may call

./run coverage

Sometimes, it can also be helpful to test code on many PDFs.8
In this case, the command-line interface and find come in handy:

Example A: Analyse PDF images (in the current working directory)
find . -name '*.pdf' -exec bash -c "echo \"{}\" && pypdfium2 pageobjects \"{}\" --filter image" \;
Example B: Parse PDF table of contents
find . -name '*.pdf' -exec bash -c "echo \"{}\" && pypdfium2 toc \"{}\"" \;

Release workflow

The release process is fully automated using Python scripts and scheduled release workflows.
You may also trigger the workflow manually using the GitHub Actions panel or the gh command-line tool.

Python release scripts are located in the folder setupsrc/pypdfium2_setup, along with custom setup code:

	update_pdfium.py downloads binaries.
	craft_packages.py pypi builds platform-specific wheel packages and a source distribution suitable for PyPI upload.
	autorelease.py takes care of versioning, changelog, release note generation and VCS checkin.

The autorelease script has some peculiarities maintainers should know about:

	The changelog for the next release shall be written into docs/devel/changelog_staging.md.
On release, it will be moved into the main changelog under docs/source/changelog.md, annotated with the PDFium version update.
It will also be shown on the GitHub release page.
	pypdfium2 versioning uses the pattern major.minor.patch, optionally with an appended beta mark (e. g. 2.7.1, 2.11.0, 3.0.0b1, ...).
Version changes are based on the following logic:
	If PDFium was updated, the minor version is incremented.
	If only pypdfium2 code was updated, the patch version is incremented instead.
	Major updates and beta marks are controlled via autorelease/config.json.
If major is true, the major version is incremented.
If beta is true, a new beta tag is set, or an existing one is incremented.
The control file is automatically reset when the versioning is finished.
	If switching from a beta release to a non-beta release, only the beta mark is removed while minor and patch versions remain unchanged.

In case of necessity, you may also forego autorelease/CI and do the release manually, which will roughly work like this (though ideally it should never be needed):

	Commit changes to the version file
git add src/pypdfium2/version.py
git commit -m "increment version"
git push

	Create a new tag that matches the version file
substitute $VERSION accordingly
git tag -a $VERSION
git push --tags

	Build the packages
python setupsrc/pypdfium2_setup/update_pdfium.py
python setupsrc/pypdfium2_setup/craft_packages.py pypi

	Upload to PyPI
make sure the packages are valid
twine check dist/*
upload to PyPI (this will interactively ask for your username/password)
twine upload dist/*

	Update the stable branch to trigger a documentation rebuild
git checkout stable
git rebase origin/main # alternatively: git reset --hard main
git checkout main

If something went wrong with commit or tag, you can still revert the changes:

perform an interactive rebase to change history (substitute $N_COMMITS with the number of commits to drop or modify)
git rebase -i HEAD~$N_COMMITS
git push --force
delete local tag (substitute $TAGNAME accordingly)
git tag -d $TAGNAME
delete remote tag
git push --delete origin $TAGNAME

Faulty PyPI releases may be yanked using the web interface.

Prominent Embedders

pypdfium2 is used by prominent embedders such as
langchain,
nougat,
pdfplumber,
and doctr.

This results in pypdfium2 being part of a large dependency tree.

Thanks to9

	Benoît Blanchon: Author of PDFium binaries and patches.
	Anderson Bravalheri: Help with PEP 517/518 compliance. Hint to use an environment variable rather than separate setup files.
	Bastian Germann: Help with inclusion of licenses for third-party components of PDFium.
	Tim Head: Original idea for Python bindings to PDFium with ctypesgen in wowpng.
	Yinlin Hu: pypdfium prototype and kuafu PDF viewer.
	Adam Huganir: Help with maintenance and development decisions since the beginning of the project.
	kobaltcore: Bug fix for PdfDocument.save().
	Mike Kroutikov: Examples on how to use PDFium with ctypes in redstork and pdfbrain.

... and further code contributors (GitHub stats).

If you have somehow contributed to this project but we forgot to mention you here, please let us know.

History

PDFium

The PDFium code base was originally developed as part of the commercial Foxit SDK, before being acquired and open-sourced by Google, who maintain PDFium independently ever since, while Foxit continue to develop their SDK closed-source.

pypdfium2

pypdfium2 is the successor of pypdfium and pypdfium-reboot.

Inspired by wowpng, the first known proof of concept Python binding to PDFium using ctypesgen, the initial pypdfium package was created. It had to be updated manually, which did not happen frequently. There were no platform-specific wheels, but only a single wheel that contained binaries for 64-bit Linux, Windows and macOS.

pypdfium-reboot then added a script to automate binary deployment and bindings generation to simplify regular updates. However, it was still not platform specific.

pypdfium2 is a full rewrite of pypdfium-reboot to build platform-specific wheels and consolidate the setup scripts. Further additions include ...

	A CI workflow to automatically release new wheels every Tuesday
	Support models that conveniently wrap the raw PDFium/ctypes API
	Test code
	A script to build PDFium from source

Footnotes

	
This means pdfium may not compile on arbitrary hosts. The script is limited to build hosts supported by Google's toolchain. Ideally, we'd need an alternative build system that runs with system packages instead. ↩

	
Intended for packaging, so that wheels can be crafted for any platform without access to a native host. ↩

	
Unfortunately, no recent HTML-rendered docs are available for PDFium at the moment. ↩

	
From the auto-generated bindings file. We maintain a reference copy at autorelease/bindings.py. Or if you have an editable install, there will also be src/pypdfium2_raw/bindings.py. ↩

	
Confer the ctypes documentation on Pointers. ↩

	
e. g. incremental read/write, management of progressive tasks, ... ↩

	
The only other liberal-licensed PDF rendering libraries known to the author are pdf.js (JavaScript) and Apache PDFBox (Java), but python bindings packages don't exist yet or are unsatisfactory. However, we wrote some gists that show it'd be possible in principle: pdfbox (+ setup), pdfjs. ↩

	
For instance, one could use the testing corpora of open-source PDF libraries (pdfium, pikepdf/ocrmypdf, mupdf/ghostscript, tika/pdfbox, pdfjs, ...) ↩

	
People listed in this section may not necessarily have contributed any copyrightable code to the repository. Some have rather helped with ideas, or contributions to dependencies of pypdfium2. ↩

 About

 Python bindings to PDFium

 pypdfium2.readthedocs.io/

 Topics

 python

 pdf

 pdf-documents

 rasterisation

 pdf-to-image

 pdfium

 Resources

 Readme

 Activity

 Custom properties

 Stars

 249
 stars

 Watchers

 6
 watching

 Forks

 12
 forks

 Report repository

 Releases
 93

 4.27.0

 Latest

 Feb 10, 2024

 + 92 releases

 Contributors
 5

 	

	

	

	

	

 Languages

	

 Python
 99.6%

	

 Shell
 0.4%

 Footer

 © 2024 GitHub, Inc.

 Footer navigation

 	
 Terms

	
 Privacy

	
 Security

	
 Status

	
 Docs

	
 Contact

	

 Manage cookies

	

 Do not share my personal information

 You can’t perform that action at this time.

