机器学习系统,结合梯度提升决策树(GBDT)和逻辑回归(LR),提供 Flask API 服务 和 本地批量预测脚本。核心目标:高精度预测 + 双维度可解释性(SHAP 特征贡献 + 人类可读决策规则),让业务、风控、审核人员真正理解“为什么”。
-
Updated
Oct 3, 2025 - Python
机器学习系统,结合梯度提升决策树(GBDT)和逻辑回归(LR),提供 Flask API 服务 和 本地批量预测脚本。核心目标:高精度预测 + 双维度可解释性(SHAP 特征贡献 + 人类可读决策规则),让业务、风控、审核人员真正理解“为什么”。
Employee Salary Predictor Using Machine Learning and Streamlit
This repository contains a heart disease prediction model utilizing machine learning algorithms including XGBoost, Support Vector Machine (SVM), Random Forest, and Logistic Regression. The project aims to predict the presence of heart disease based on various patient features, using data from Kaggle Repository.
We have performed data analysis and data visualisation on a subset of the LendingClub dataset and then created a logical regression model to assess whether or not a new customer is likely to meet it's debt obligations(pay back the loan).
42 ML Project that aims to perform a linear regression on a given dataset
Add a description, image, and links to the logical-regression topic page so that developers can more easily learn about it.
To associate your repository with the logical-regression topic, visit your repo's landing page and select "manage topics."