-
Notifications
You must be signed in to change notification settings - Fork 0
API v3
True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+-----
| 1 | 5
1 +-----+
| 2 | 7
-----+-----+--- } 36
| 3 | 11
2 +-----+
| 4 | 13
-----+-----+------
| 5 | 17
3 +-----+ } 36
| 6 | 19
-----+-----+-----
- x1 = 6x6 - 19 = 36 - 19 = 17
True Prime Pairs:
(5,7), (11,13), (17,19)
|----------- 5 ----------|------------- 6 -------------|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | x1 | X2 | x3 | x4 | x5 | x6 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|- 5-|---18 ---|--- 30---|
|-- 6x3 --|-- 6x5 --|-- 6x6 --|------- 6x10 ------|
- x6 = 120 - x1 - (x2 + x3 + x4 + x5) = 120 - 17 - 60 = 43
True Prime Pairs:
(5,7), (11,13), (17,19)
|----------- 5 ----------|---------------- 7 ---------------|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 | X2 | x3 | x4 | x5 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | Δ |--- 24 --| Δ | 19 | Δ |-------- 60 -------| Δ |
| | | | | | | | |
| | └─ ─ 24 ─ ─ ─┘ | | └─ ─ ─ ─ ─ 60 ─ ─ ─ ─ ─┘ |
| 5 |-------- 48 -------| 19 |------------ 120 ------------|
- x2 + x5 = x3 + x4 = 60 / 2 = 30
True Prime Pairs:
(5,7), (11,13), (17,19)
|----------- 5 ----------|---------------- 7 ---------------|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 | X2 | x3 | x4 | x5 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | Δ |--- 24 --| Δ | 19 | Δ | Δ |--- 30 --| Δ | Δ |
| | | | | | | | | | |
| | └─ ─ 24 ─ ─ ─┘ | | | └─ ─ 30 ─ ─ ─┘
| | | | └─ ─ ─ ─ ─ 60 ─ ─ ─ ─ ─┘ |
| 5 |-------- 48 -------| 19 |------------ 120 ------------|
True Prime Pairs:
(5,7), (11,13), (17,19)
|------------------------------- 36 ----------------------------------|-- 36 ---|
|------------------------------- 12 ------------------------|-- 24 ---|-- 36 ---|
|----------- 5 ----------|---------------- 7 ---------------|~11~|~13~|~17~|~19~|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 | x2 | x3 | x4 | x5 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|-- 12 ---|---{24}--| 17 |--{36}---| x2 |-- 6x5 --| x5 | 43 |
|-- 6x2 --|------- 6x10 ------| 17 |------ 6x10 ------| 43 |
|----------------- 6x12 ------|-------------6x20 -----------|
- x2 x 36 = x5 x 24
True Prime Pairs:
(5,7), (11,13), (17,19)
|-- 36'---|------------------------------- 36' ---------------------------------|
|-- 36'---|-- 24'---|------------------------------- 12' -----------------------|
|~19'|~17'|~13'|~11'|---------------- 7' --------------|----------- 5' ---------|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5' | 7' | 11'| 13'| 17'| 19'| 17'| x2 | x3 | x4 | x5 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|-- 12'---|--{24'}--| 17'|--{36'}--| x2 |-- 6x5 --| x5 | 43 |
- x2 = x5 x 24/36 = ⅔ x (30 - x2) = 20 - ⅔x2
- x2 = 20 x 3/5 = 12
- x5 = 30 - 12 = 18
True Prime Pairs:
(5,7), (11,13), (17,19)
|------------------------------- 36 ----------------------------------|-- 36 ---|
|------------------------------- 12 ------------------------|-- 24 ---|-- 36 ---|
|----------- 5 ----------|---------------- 7 ---------------|~11~|~13~|~17~|~19~|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 |{12}| x3 | x4 |{18}| 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|--- 12 --|--- 24 --|--- 36 --| ΔΔ ΔΔ
Sekarang tersisa dua (2), variable lagi yaitu x3 dan x4. Ini adalah yang paling sulit.
Ini karena tidak ada rujukan yang bisa dipakai secara geometri dari True Prime Pairs untuk dapat menentukan nilai dari kedua variabel ini selain jumlahnya yang 30.
True Prime Pairs:
(5,7), (11,13), (17,19)
|------------------------------- 36 ----------------------------------|-- 36 ---|
|------------------------------- 12 ------------------------|-- 24 ---|-- 36 ---|
|----------- 5 ----------|---------------- 7 ---------------|~11~|~13~|~17~|~19~|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 | 12 | x3 | x4 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|-- 12 ---|--- 24 --| 17 |-- 36 ---| 12 |-- 6x5 --| 18 | 43 |
|-- 6x2 --|------- 6x10 ------| 17 |------ 6x10 ------| 43 |
|----------------- 6x12 ------|-------------6x20 -----------|
Mungkin hanya satu saja yang istimewa yaitu angka 48 yang muncul berdampingan:
True Prime Pairs:
(5,7), (11,13), (17,19)
|------------------------------- 36 ----------------------------------|-- 36 ---|
|------------------------------- 12 ------------------------|-- 24 ---|-- 36 ---|
|----------- 5 ----------|---------------- 7 ---------------|~11~|~13~|~17~|~19~|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 | 12 | x3 | x4 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|-- 12 ---|--- 24 --| 17 |---- {48} ----|---- {48} ----| 43 |
|-- 6x2 --|------- 6x10 ------| 17 |------ 6x10 ------| 43 |
|----------------- 6x12 ------|-------------6x20 -----------|
Dari peta keistimewaan² ini saya coba kaitkan dengan angka 48 yang berdampingan dengan 43, gak nemu². Saya juga bahkan sampai ke teori modulus dari angka 30 ini:
Dari sini saya coba cari hubungan khusus antara angka 30 dengan distribusi (48,48,43), saya mulai dari peta keistimewaan, yang bisa kita dapatkan secara online:
Berikut ini dari Wikipedia:
- Thirty is the sum of the first four squares, which makes it a square pyramidal number.
- It is a primorial.
- 30 is the smallest sphenic number, and the smallest of the form 2 × 3 × r, where r is a prime greater than 3. 30 has an aliquot sum of 42; the second sphenic number and all sphenic numbers of this form have an aliquot sum 12 greater than themselves.
- Adding up some subsets of its divisors (e.g., 5, 10 and 15) gives 30, hence 30 is a semiperfect number.
- 30 is the largest number such that all coprimes smaller than itself, except for 1, are prime.
- A polygon with thirty sides is called a triacontagon.
- The icosahedron and the dodecahedron are Platonic solids with 30 edges. The icosidodecahedron is an Archimedean solid with 30 vertices, and the Tutte–Coxeter graph is a symmetric graph with 30 vertices.
- E8 has Coxeter number 30.
- 30 is a Harshad number.
- Since any group G such that |G| = pnm, where p does not divide m, has a subgroup of order pn, and 30 is the only number less than 60 that is not either a prime or of the above form, it is the only candidate for the order of a simple group less than 60 that one needs other methods to reject.
Berikut ini dari Prime Curious:
- The largest integer n with the property that every smaller integer relatively prime to n is itself a prime.
- 3030 + 1 - 30 + 1 is prime. [Luhn]
- n is a Giuga number if p divides (n/p-1) for every prime divisor p of n. 30 is the smallest such number.
- 30*2^30-1 is a Woodall prime. [Dobb]
- 30 is the largest two-digit number such that 30^30+30-1 is prime. [Opao]
- The product of first five nonzero Fibonacci numbers. Note that 30 + 1 and 30 - 1 are twin primes. [Gupta]
- Zhi-Wei SUN conjectured in May 2008 that exactly 30 odd integers > 1, all multiples of 3, cannot be written in the form p + n(n+1), where p is a prime congruent to 1 (mod 4) and n a natural number. It is twice more than when p is congruent to 3 (mod 4). [Capelle]
- Least integer the sum of whose distinct semiprime factors is prime. Semiprimes (6, 10, 15) divide 30, and 6 + 10 + 15 = 31. [Post]
- The only composite number n such that n^(n+2)+1 is a non-titanic prime, i.e., 30^32+1= 185302018885184100000000000000000000000000000001 (48-digits) is prime. [Loungrides]
- The smallest sphenic number whose prime factors form a prime-digit prime, i.e., 523. [Loungrides]
- 30 is the smallest value of n such that n^(n+2)+1 is prime. [Ewing]
- The smallest integer n such that n^3/(Rn)^3-(Rn) is prime, where Rn is the reversal of n. [Bajpai]
- The smallest sphenic number, 2*3*5, that can also be represented as sum of two consecutive emirps, i.e., 13+17, is also an oblong number, i.e., 5*6. [Loungrides]
Saya juga cek satu persatu keistimewaan dari angka 43, karena sangat banyak maka saya sajikan saja berupa rangjapan layar berikut ini:
Saya cek lagi satu persatu, termasuk juga dengan adanya hubungan 43 dengan 48 via susunan dari lima (5) bilangan prima dalam bentuk piramida seperti ini:
43
4483
444883
44448883
4444488883
are 5 primes
Namun walau sudah peras otak, tetap tidak saya lihat korelasinya untuk menunjukkan berapa nilai dari x3 dan x4. Mungkin otak saya kurang encer atau orang yang kepintaran..
True Prime Pairs:
(5,7), (11,13), (17,19)
1 2 3 4 5 6 | 7 8 9 10 11 12
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 | 12 | x3 | x4 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 1 2 3 {4} {5} 6 7
True Prime Pairs:
(5,7), (11,13), (17,19)
1 2 3 4 5 6 |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 | 12 | x3 | x4 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 1 2 3 4 5 6 7
| Δ |
19 = 8th prime
7 & 8 & 6 = 786
d(786)=d(21),6x6x6=216
|----------- 6 ---------------|------------- 6 ------------|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 | 12 | x3 | x4 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|--- 12 --|-------- 60 -------|------------ 120 ------------|
|-- 6x2 --|------- 6x10 ------|------------ 6x20 -----------|
|----------- 6x32 = 6x2^5 = {192} = 786 - 594 --------------|
Angka 192 ini merupakan angka composite yang sangat istimewa terhadap proses yang terjadi dalam sistem di projek ini, kita akan bahas lebih lanjut pada bagian terpisah.
True Prime Pairs:
(5,7), (11,13), (17,19)
1 2 3 4 5 6 |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 | 12 | x3 | x4 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
Δ Δ
8th prime {14}th prime
1 2 3 4 5 6 |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 | 12 | x3 | x4 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
Δ
619 = {114}th prime
True Prime Pairs:
(5,7), (11,13), (17,19)
1 2 3 4 5 6 |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 | 12 | x3 | x4 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 1 2 3 4 5 6 7
Δ Δ
d(19)=1 d(43)=7
|----------- {6} -------------|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 | 12 | x3 | x4 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|-------------- {7} ---------------|
Δ
19th prime = 67
d(19)=1,1+67=68
Kesimpulannya skema yang mengarah ke x3 dan x4 adalah seperti ini:
True Prime Pairs:
(5,7), (11,13), (17,19)
|---------------- 101 ------------------|----- 48 -----| 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 | 12 | x3 | x4 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|----- 48 -----| x3 |--- x4 + 61 --|
|--------------- 139 --------------|
101+67-(17+12)
{168}-{29}
True Prime Pairs:
(5,7), (11,13), (17,19)
|----------- 72 --------------|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 |{17}| 19 |{17}| 12 | x3 | x4 | 18 |{43}|
+----+----+----+----+----+----+----+----+----+----+----+----+
|--------------- 139 --------------|
34th prime
34 = 17+17 = mirror 43
17x17 = {289} = (8+9)²
Dari semua konfigurasi ini jelas terlihat bahwa kuncinya ada di angka 139. Dia merupakan kunci pertama dari sistem projek ini. Kita akan fokuskan selanjutnya ke angka ini.
Sayangnya dari topik mengenai hubungan angka 139 ini dengan True Prime Pairs sangat minim di internet. Kebanyakan hal² yang umum saja.
Berikut ini dari Wikipedia:
- 139 is the 34th prime number. It is a twin prime with 137. Because 141 is a semiprime, 139 is a Chen prime. 139 is the smallest prime before a prime gap of length 10.
- This number is the sum of five consecutive prime numbers (19 + 23 + 29 + 31 + 37).
- It is the smallest factor of 64079. It is also the smallest factor of the first nine terms of the Euclid–Mullin sequence, making it the tenth term.
- 139 is a happy number and a strictly non-palindromic number.
Berikut ini dari Prime Curious:
- 139 and 149 are the first consecutive primes differing by 10. [Wells]
- 3139 + 2 is prime.
- Stirling's formula in terms of the gamma function contains the prime number 139.
- 139 divides the sum of the first 139 composite numbers. [Honaker]
- The largest prime factor among the smallest pair of odd amicable numbers.
- The smallest prime that contains one prime digit, one composite digit, and one digit that is neither prime nor composite. [Brown]
- The smallest prime factor of the smallest multidigit composite Lucas number with a prime index.
- The number of chromatically unique simple graphs on seven nodes. [Post]
- STB 139 is the cryptic name for a nightspot located in the Rippongi district of Tokyo, Japan.
- Pomerance showed that the second largest prime factor of an odd perfect number should be at least 139.
- 139 = 9*8+7*6+5*4+3*2-1. [Silva]
- The smallest prime formed by concatenating all divisors of a composite number. [Silva]
- The binary expansion 10001011 of 139 is a de Bruijn sequence of order 3 on 2 digits. [Poo]
- The largest prime, less than a googol, formed by concatenating in ascending order the first n powers of 3 (n=3). Note that for n=2 we take the smallest such prime (emirp). [Loungrides]
- The largest number of states that a six-piece Burr Puzzle could have without coming apart. [Cutler]
- Amazon™ unveiled (in late July 2010) a version of its Kindle electronic reader that sells for 139 dollars, its lowest price yet.
- The smallest prime number whose product of digits is a prime cube. [Gudipati]
- "The children of the porters: the children of Shallum, the children of Ater, the children of Talmon, the children of Akkub, the children of Hatita, the children of Shobai, in all an hundred thirty and nine." (Ezra 2:42, KJV) [Repasi]
- The word 'begat' is found in 139 verses of the KJV Bible. James Ussher, Archbishop of Armagh, Primate of All Ireland, utilized them in his chronology of the world.
- The magic constant in a special magic square composed by the Indian prodigy Ramanujan, whose birth date appears in the first row. [Beedassy]
- The only known Euler irregular prime p with Euler irregular pair (p,p-11).
- You cannot build an almost (i.e., without the top ball) square pyramidal stack of cannonballs with a prime number of cannonballs greater than 139. [Honaker]
- The smallest prime that is the sum of a perfect number of squares.
- 2^1 + 2^3 + 2^9 +/- 1 and 2^1 + 2^3 + 2^9 + 139^2 are all prime. [Homewood]
- (1+3+9)^(1+3+9) + sigma(139)^sigma(139) is prime and the largest known of this form. [Sariyar]
- There are 139 products sold at the Prime Curiologist Store that contain a curious logo.
Dari peta keistimewaan² ini saya tidak melihat solusi untuk mendapatkan nilai x3 dan x4. Jikapun ada yang bahas keistimewaan khusus dari angka 139 ini maka hampir semua itu mengarah ke Ramanujan Magic Square, tidak membantu kasus yang kita bahas.
Disini saya sampai pada kesimpulan bahwa x3 dan x4 ini berhubungan dengan skema distribusi.
True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+----- ┐
| 1 | 5 |
1 +-----+ |
| 2 | 7 |
-----+-----+--- } 36 | layer| i | f
| 3 | 11 | -----+-----+-----
2 +-----+ ∑------> 1 | 6 | 19
| 4 | 13 | -----+-----+-----
-----+-----+------ | 2 | ? | ?
| 5 | 17 | -----+-----+-----
3 +-----+ } 36 | 3 | ? | ?
| 6 | 19 | -----+-----+-----
-----+-----+----- ┘
- 6 + (6 x 6) + 6 x (6 + 6) = 6 + 36 + 72 = 114
True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+----- ┐
| 1 | 5 |
1 +-----+ |
| 2 | 7 |
-----+-----+--- } 36 | layer| i | f
| 3 | 11 | -----+-----+-----
2 +-----+ ∑------> 1 | 6 | 19
| 4 | 13 | -----+-----+-----
-----+-----+------ | 2 | 36 | x1
| 5 | 17 | -----+-----+-----
3 +-----+ } 36 | 3 | 72 | x2
| 6 | 19 | -----+-----+-----
-----+-----+----- ┘ ∑ | 114 | x3
Pengelompokan 114 ini dapat Anda lihat pada Project Map:
- Form: 2® 12 baris = 6 unit
- Route: 3 x 12 baris = 36 unit
- Channel: 6 x 12 baris = 72 unit
- x1 = 8 + (36 - 1) = 8 + 35 = 43 th prime
True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+----- ┐
| 1 | 5 |
1 +-----+ |
| 2 | 7 |
-----+-----+--- } 36 | layer| i | f
| 3 | 11 | -----+-----+-----
2 +-----+ ∑------> 1 | 6 | 19 <--- 8th prime
| 4 | 13 | -----+-----+-----
-----+-----+------ | 2 | 36 | <--- 43th prime
| 5 | 17 | -----+-----+-----
3 +-----+ } 36 | 3 | 72 | x2
| 6 | 19 | -----+-----+-----
-----+-----+----- ┘ ∑ | 114 | ?
Permutations:
163 = mirror of 361 = 19 x 19
- x2 = 43 + (72 - 1) = 43 + 71 = 114 th prime
True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+----- ┐
| 1 | 5 |
1 +-----+ |
| 2 | 7 |
-----+-----+--- } 36 | layer| i | f
| 3 | 11 | -----+-----+-----
2 +-----+ ∑------> 1 | 6 | 19 <--- 8th prime
| 4 | 13 | -----+-----+-----
-----+-----+------ | 2 | 36 | 191 <--- 43th prime
| 5 | 17 | -----+-----+-----
3 +-----+ } 36 | 3 | 72 | 619 <--- 114th prime
| 6 | 19 | -----+-----+-----
-----+-----+----- ┘ ∑ | 114 | 619
Ketiga angka yaitu: 19, 38 dan 68 ini dapat Anda jumpai pada Tabulasi Vektor yang merupakan angka² batas pada peralihan di tiap masing² layar.
Dengan kumpulan algoritma² yang saya kemukakan di atas saya sampai pada kesimpulan bahwa skema dari angka 139 ini terdistribusi via tiga (3) angka² yang membentuknya yaitu: 1, 3, dan 9:
True Prime Pairs:
(5,7), (11,13), (17,19)
|------------- 6 -------------|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 | 12 | x3 | x4 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|----------- 1' ---------| 3' | 9' |
Dengan demikian skema besar yang ingin dia capai adalah skema ke bentuk semula dari True Prime Pairs via transformasi dari angka enam (6) ke satu (1) dan sembilan (9).
True Prime Pairs:
(5,7), (11,13), (17,19)
|----------- 5 ----------|---------------- 7 ---------------|~11~|~13~|~17~|~19~|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 | 12 | x3 | x4 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|------------- 6' ------------| 1' |-------------------- 9' --------------------|
Seperti kita telah bahas sebelumnya maka hal sama akan juga berlaku pada arah kebalikan. Disini tampak bahwa skema 5' dan 7' itu sebenarnya ada pada angka 5 + 7 atau 12.
True Prime Pairs:
(5,7), (11,13), (17,19)
|-- 36'---|------------------------------- 36' ---------------------------------|
|-- 36'---|-- 24'---|---------------------------------- {12'} ------------------|
|~19'|~17'|~13'|~11'|---------------- 7' --------------|----------- 5' ---------|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5' | 7' | 11'| 13'| 17'| 19'| 17'| 12 | x3 | x4 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
Sehingga jika kita kembalikan ke struktur 12 angka pemekaran dari True Prime Pairs maka alokasinya berada sebelum angka x3 dan x4 yang sedang kita bahas:
- d(5 + 7) = d(12)
True Prime Pairs:
(5,7), (11,13), (17,19)
|----------- 5 ----------|---------------- 7 ---------------|~11~|~13~|~17~|~19~|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 |{12}| x3 | x4 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
1 2 3 4 5 6 | 7 8 9 10 11 {12}
Karena akar digital dari 12 ini ada tiga (3) maka hanya ada dua (2) angka yang memungkinkan ini bisa terjadi. Mereka ada pada urutan ketiga dan keenam yaitu 11 dan 19.
- d(12) = d (1 + 2) = d(3)
True Prime Pairs:
(5,7), (11,13), (17,19)
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 |{11}| 13 | 17 |{19}| 17 | 12 | x3 | x4 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
1 2 3 4 5 6 | 7 8 9 10 11 12
ΔΔ ΔΔ ΔΔ ΔΔ
d(3)=3 d(6)=6 d(9)=9 d(12)=3
- x3 + x4 = 11 + 19 = 30 = d(3)
True Prime Pairs:
(5,7), (11,13), (17,19)
|--- 30 --|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5'| 7'| 11'| 13'| 17'| 19 | 17 | 12 |{11}|{19}| 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|---------36'-------|---36'---| ΔΔ
Maka tidak heran jika cari referensi kemanapun sulit jika boleh dikatakan tidak ada. Apa boleh buat jika tidak ada orang berpikiran sampai kesini maka satu²nya jalan adalah: pikir sendiri.
Alokasi enam (6) angka "true prime pairs" kedalam tujuh (7) bagian ini akan bergeser dari formasi simetris 72 (36,36) ke 139 dalam bentuk tiga (3) formasi yaitu (48,48,43) seperti berikut ini:
True Prime Pairs:
(5,7), (11,13), (13,19)
|--------------- 139 --------------|
|--- 36---|6+6-|----- 48 -----|-43-|
| 1 2 3 4 5 6 7
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5'| 7'| 11'| 13'| 17'| 19 | 17 |{12}| 11 | 19 |{18}| |
+----+----+----+----+----+----+----+----+----+----+----+----+
|---------36'-------|---36'---| ΔΔ └─>18+5²=11+7+5²=43
| ^
└─ ─ ─ ─ ─ ─ ─ ─ ── ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┘
| 1 2 3 4 5 6 7
+----+----+----+----+----+----+----+----+----+----+----+----+
| - | - | - | - | - | 19 | 17 |{12}| 11 | 19 |{18}| 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|----- 48 -----|----- 48 -----| 43 |
|---- 40+8 ----|---- 40+8 ----|35+8|
|--- 6x(5+3)---|--- 6x(5+3)---|6+6+6+5+5+5+5+5
|-- 5' to 3' --|-- 5' to 3' --|3'5'|
|-- Base Zone -|- Mirror Zone |Fork|--> System
|-- Base Replication Pairs ---| ΔΔ |
Permutation:
139 = 19 + 17 + 12 + 11 + 19 + 18 + 43
139 = (19,17,12) + (11,19,18) + 43
139 = (17,12) + (11,19,18) + (43+19)
139 = (29 + 48 + 62 + 29) - 29
139 = (77 + 29 + 62) - 29
139 = (102 + 66) - 29
139 = 168 - 29
Angka 139 ini merupakan angka kunci pertama dari Formasi-1729. Padanya melekat formasi 6+6=12 dari input dan formasi 18+28=43 dari output (lihat simbol ΔΔ).
139 is the smallest prime whose product of digits is a prime cube. The smallest prime number that is the sum of a perfect number of squares.
id: 36
---+-----+-----
1 | 1 | 12
---+-----+-----
2 | 13 | 32
---+-----+-----
3 | 33 | 50
---+-----+-----
4 | 51 | 68
---+-----+-----
5 | 69 | 70
---+-----+-----
6 | 71 | 83
---+-----+-----
Selanjutnya kita bahas implementasi API-v4.
https://github.blog/2008-03-12-the-api/
https://developer.github.com/v3/guides/
https://developer.github.com/v3/libraries/
This documentation is mapped under Mapping and licensed under Apache License, Version 2.0.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Copyright (c) 2018-2020 Chetabahana Project