-
Notifications
You must be signed in to change notification settings - Fork 0
This wiki is courtesy of Chetabahana Project. Find all of them on Project Map. | ||||||||
⏫ | 🔼 | ⏪ Intro |
|
🔁 Base |
Next |
Last ⏩ | 🔽 | ⏬ |
---|
Berikut ini pemetaan (mapping) angka Delapanbelas (18) kedalam piramida data dari diagram berupa konsep, detil bagan dan modul² yang dipakai sebagai dasar pemrograman.
Dadi referensi yang dapat saya temukan, secara umum tidak nampak adanya topik tentang keistimewaan angka ini yang mengarah ke apa yang kita akan bahas.
Singkatnya peran signifikan pada projek ini adalah sebagai framing bagi polarisasi dari bilangan² prima. Sejauh mana mungkin hanya topik dari Prime Hexagon ini yang mendekati.
Pada prinsipnya setiap angka berada pada Kelompok Polaritas dimana pola enam (6) siklus berulang pada angka sembilanbelas (19), empatpuluh tiga (43) dan tujuhpuluh satu (71).
Pada halaman pembukaan kita sudah bahas tentang Skema in-out. Disini kita akan bahas bagaimana peran dari angka delapanbelas (18) dalam mengantarkan ketiga angka ini.
Sebelum masuk ke detail, berikut ini daftar keistimewaan angka 18 menurut wikipedia:
- Adalah angka gabungan, pembaginya adalah 1 , 2 , 3 , 6 dan 9. Tiga dari pembagi ini (3, 6 dan 9) berjumlah 18, karenanya 18 adalah angka semiperfect
- Delapan belas adalah kuadrat terbalik pertama dari bentuk p · q 2
- Di base sepuluh, ini adalah nomor Harshad
- Adalah angka yang melimpah , karena jumlah pembagi yang tepat lebih besar dari itu sendiri (1 + 2 + 3 + 6 + 9 = 21)
- Dikenal sebagai nomor soliter, meskipun tidak menjadi koprime untuk jumlah ini
- Adalah jumlah pentomino satu sisi
- Simak untuk keistimewaan² lainnya.
5 + 6 + 7 = 18
5² + 6² + 7² = 110
a | a² |
+----+-----+----
5 | 25 | 25
+----+-----+----
6 | 36 | 61
+----+-----+----
7 | 49 | 110
+----+-----+----
18 | 110 |
3 + 6 + 9 = 18
33 + 66 + 99 = 11 x 18
a | aa |
+----+-----+----
3 | 33 | 33
+----+-----+----
6 | 66 | 99
+----+-----+----
9 | 99 | 198
+----+-----+----
18 | 198 |
5 + 11 + 2 = 18
5 x 11 x 2 = 110
Separasi antara 4 ke 22 mengantar skema (3,6,9) dari id: 18 menjadi dominan. Dengan demikian proses dari tujuh (7) alur dapat diuraikan dalam format 1 vs 6:
id: 18
---+-----+-----
1 | 1 | 5 ----
---+-----+----- |
2 | 6 | 8 |
---+-----+----- | 2nd
3 | 9 |{26} |
---+-----+----- |
4 |{27} | 28 --3-¤
---+-----+----- | 3rd
5 | 29 | 31 ----
---+-----+-----
6 | 32 | 32 ----
---+-----+----- |
7 | 33 | 44 |
---+-----+----- | 4th
8 | 45 | 46 |
---+-----+----- |
9 | 47 |{49} --6-¤
---+-----+----- | 5th
10 |{50} | 50 ----
---+-----+-----
11 | 51 | 53 ----
---+-----+----- |
12 | 54 | 59 |
---+-----+----- | 6th
13 | 60 | 82 |
---+-----+----- |
14 | 83 |{102} --9-¤
---+-----+----- | 7th
15 |{103}| 110 ----
---+-----+-----
- 919 = 1 + 6 + 12 + 18 + 24 + 30 + 36 + 42 + 48 + 54 + 60 + 66 + 72 + 78 + 84 + 90 + 96 + 102
- 919 = 1 + 6(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17) = 1 + 6(153)
Polaritas angka enam (6) ada di angka prima ke-18 yaitu enampuluh satu (61). Karena itu proses pola angka enam (6) akan ditrigger oleh angka prima terkecil yang memunculkan polaritas ini.
- 61 = 18th prime
id: 6
---+-----+-----+-----+-----+
1 | 72 | 1 | 73 | 74 |-----------------
---+-----+-----+-----+-----+ |
2 | {20}| 74 | 94 | 168 |----------- |
---+-----+-----+-----+-----+ | |
3 | {18}| 95 | 113 | 208 |----- | |
---+-----+-----+-----+-----+ | | |
4 | {7}| 114 | 121 | 235 |- {7}| 5 | 1 |{61} = 18th prime
---+-----+-----+-----+-----+ | | |
5 | 13 | 122 | 135 | 257 |----- | |
---+-----+-----+-----+-----+ | |
6 | 19 | 136 | 155 | 291 |----------- |
---+-----+-----+-----+-----+ |
7 | 9 | 156 | 165 | 321 |----------------
---+-----+-----+-----+-----+
Polaritas ini tampil secara implisit pada bagan di bawah ini. Selain angka 1, 7 dan 18 dia juga menampilkan angka 34 yang mengantarkan pola 35 dan 55 ke 135 dan 155.
Ini akan diawali dari angka 2 dan 3 sebagai bilangan prima ke-1 dan -2 yang mempunyai arah polaritas atau vektor yang sama. Detilnya bisa Anda simak pada video Prime Hexagon.
Angka² ini berlaku sebagai penopang utama dari fungsi framing angka delapanbelas (18) dalam membentuk Skema in-out. Kita bahas peran mereka ini lebih lanjut.
True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+------
| 1 | 5
1 +-----+
| 2 | {7}
-----+-----+--- } 36
| 3 | 11
2 +-----+
| 4 | {13}
-----+-----+------
| 5 | 17
3 +-----+ } 36
| {6} | {19}
-----+-----+------
- 61 = 18th prime
id: 6
---+-----+-----+-----+-----+
1 | 72 | 1 | 73 | 74 |-----------------
---+-----+-----+-----+-----+ |
2 | 20 | 74 | 94 | 168 |----------- |
---+-----+-----+-----+-----+ | |
3 | 18 | 95 | 113 | 208 |----- | |
---+-----+-----+-----+-----+ | | |
4 | {7}| 114 | 121 | 235 |- {7}| 5 | 1 | 61 = 18th prime
---+-----+-----+-----+-----+ | | |
5 | {13}| 122 | 135 | 257 |----- | |
---+-----+-----+-----+-----+ | |
6 | {19}| 136 | 155 | 291 |----------- |
---+-----+-----+-----+-----+ |
7 | 9 | 156 | 165 | 321 |----------------
---+-----+-----+-----+-----+
Pola ini ada di Chart Fungsi Zeta via 3x6 dari 18 polarisas angka dua (2) versus 19 putaran tiga (3) hexagon dari 18 ke 19 yabg bertumpu di 5 vs 6 titik dengan Δ polar tepat 2x(7,10) ke 14 dan 20.
- 20 x 10 = 200 = 16 x 6 + (10² + 14 - 10) = 96 + 114 - 10 = 96 + 104
Output chart ini sudah diuji dengan sejumlah besar bilangan sampai 250 x 109 roots maka polanya saya jadikan basis tiga (3) hexagon polar 18 ke 19 sebagai properti dari angka 1 dan 2.
Anda bisa lihat bahwa vektor yang dibawa oleh angka dua (2) diteruskan dengan arah yang sama oleh angka tiga (3). Perubahan baru terjadi di angka lima (5) sesuai True Prime Pairs.
True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+------
| {1} | {5}
1 +-----+
| 2 | 7
-----+-----+--- } 36
| 3 | 11
2 +-----+
| 4 | 13
-----+-----+------
| 5 | 17
3 +-----+ } 36
| 6 | 19
-----+-----+------
Dengan demikian angka lima (5) di skema ini sesungguhnya terkandung angka 2 dan 3 yang memiliki polaritas yang sama yaitu di angka tujuhpuluh satu (71) tadi.
True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+------
| {1} | {2,3}
1 +-----+
| 2 | 7
-----+-----+--- } 36
| 3 | 11
2 +-----+
| 4 | 13
-----+-----+------
| 5 | 17
3 +-----+ } 36
| {6} | {19}
-----+-----+------
Yang khusus darinya adalah bahwasanya struktur tiap unit DNA di tubuh kita ini dibangun dari kedua angka ini. Mereka membentuk format 2 vs 3 ikatan hidrogen.
Seperti Anda lihat pada gambar pasangan unit DNA ini terbentuk bersilangan yaitu 6 ke 9 dan 9 ke 6 dimana perbandingan angka nya sesuai ikatan hidrogen yaitu 2 vs 3.
Berikut peran angka 71 pada formasi 114 angka yang ditabulasi berdasarkan The Hexagon Chart. Anda bisa simak detilnya di halaman Pratinjau. Perhatikan silang 2 dan 3 di angka 23.
True Prime Pairs:
(5,7), (11,13), (17,19)
layer| 1st | 2nd | 3rd |∑(2,3)
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------ ---
| | 7 |{19} | 38 | 62 | 63 |{64} | 93 | 94 | 95 | 139 |
i + 1 +-----+-----+-----+-----+-----+-----+-----+-----+-----+------ 5¨
| | 8 | 20 | 39 | 65 |{66} | 68 | 96 | 97 | 98 | |
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------ ---
| | 9 | 21 | 40 |{43} | 67 | 69 | 99 | 100 | 101 | 286 |
+ 2 +-----+-----+-----+-----+-----+-----+-----+-----+-----+------ 7¨
| |{10} | 22 |{41} | 44 | 45 | 70 | 102 | 103 | 104 | |
q +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------ ---
| | 11 |{23} | 42 | 46 | 47 |{71} | 105 | 106 | 107 | 114 |
+ 3 +-----+-----+-----+-----+-----+-----+-----+-----+-----+------ 11¨
| |{12} | 24 |{25} | 48 | 49 | 72 | 108 | 109 | 110 | |
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------ ---
| | 13 | 26 | 27 |{50} | 51 | 73 | 74 | 111 | 112 | 247 |
+ 4 +-----+-----+-----+-----+-----+-----+-----+-----+-----+------ 13¨
| | 14 | 28 | 29 | 52 |{53} | 75 | 76 | 113 |{114}| |
r +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------ ---
| | 15 | 30 | 31 | 54 | 55 |{77} | 78 | 79 | 80 | 157 |
+ 5 +-----+-----+-----+-----+-----+-----+-----+-----+-----+------ {17¨}
| | 16 | 32 | 33 | 56 | 57 | 81 |{82} | 83 | 84 | |
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------ ---
| | 17 | 34 | 35 | 58 | 59 | 85 | 86 |{87} | 88 | 786 |
o + 6 +-----+-----+-----+-----+-----+-----+-----+-----+-----+------ 19¨
| | 18 | 36 | 37 | 60 | 61 | 89 | 90 | 91 |{92} | |
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------ ---
∑ | 21 | 150 | | | | | | | | | 1729
|--------------------------------------------------- 16¨ ---|
|--------------------------------------- 15¨ ---|
|--------------------------- 14¨ ---|
|--------------- 13¨ ---|
|-- {12¨} --|
Polaritas silang angka 23 ini terbangun dari dua (2) angka 6 dan 9 jadi jumlahnya limabelas (15). Pada unit DNA ada sepasang maka saya compile di angka tigapuluh (30).
- ∑2 = ∑1(1,30,40) = 71
Jadi angka 2 dan 3 itu walaupun mereka pada awalnya mempunyai arah vektor yang sama namun dalam implikasinya ternyata akhirnya mereka membentuk formasi yang bersilangan.
Format ini terjadi secara palindrom via crossing di angka 71 ke 17. Untuk menjelaskannya saya akan ambil pola Sistem DNA mulai dari konstruksi atom² yang membentuknya.
id: 17
---+-----+-----
1 | 1 | 10
---+-----+-----
2 |{11} | 22
---+-----+-----
3 | 23 | 39
---+-----+-----
4 | 40 | 60
---+-----+-----
5 |{61} | 70
---+-----+-----
6 |{71} | 77
---+-----+-----
7 | 78 | 82
---+-----+-----
8 | 83 | 100
---+-----+-----
9 |{101}| 104
---+-----+-----
10 | 105 | 111
---+-----+-----
Skema pemetaan ini akan kita bahas detil kaitannya dengan Sistem DNA dimana ternyata formasi output ketiga layar (1 ke 3) dari input di angka 10 tadi terwakili oleh formasi 13 ke 17 seperti ini:
Untuk itu kita perlu bahas cara menampilkan proses yang terjadi pada 114 angka² ini. Dimana kita petakan komposisi In/Out (IO) dari titik² input dan ouput pada masing² objek.
Nah tigapuluh lima (35) ini ada di angka 17 pada hexagon maka dia merupakan skema 3‘ dan 5‘. Namun hanya berupa pasangan in-out dari 5‘ dan 3‘ karena prosesnya berlanjut ke 50 dan 68.
Seperti sudah diuraikan sebelumnya pada struktur hexagon pada angka 50 ada 68 dan 86 dimana 22 selisihnya akan menjadi basis dari siklus 25 ke 43 dan 43 ke 71 sampai ke angka 114.
Dari batas² angka yang menjadi patokan yaitu 35, 43, 50 dan 68 ini maka dengan prinsip serupa kita dapat kelompokkan angka² berdasarkan urutan dari prosesnya sebagai berikut:
- input (12) mewakili polarisasi 12 via 1, 2 dan 11
- query (15) mewakili polarisasi 15 via 12, 13 dan 14
- result (19) mewakili polarisasi 15 ke 16 dan 16 ke 17
- output (22) mewakili polarisasi 17 ke 29 kembali ke 12
- 12 + (15 + 19) + 22 = (12 + 34) + 22 = 46 + 22 = 68
Chetabahana Project
1: Site
2: Main
3: Project
4: Pratinjau
5: Pola Dasar
6: Bagan Kerja
7: Field Tutorial
8: Cloud Site API
9: Google Ads API
10: Cloud Tasks API
11: Google Trends API
{12}: Basis Implementasi
Daftar Isi
13: Beranda
14: Dunia Internet
18: Situs Online
19: Project Online
20: Apa itu GitHub
15: Programming
21: Cara Daftar
30: Personal
31: Organisasi
22: Implementasi
32: GitHub API
33: Fitur GitHub
23: Kenapa GitHub
34: GitHub Actions
35: Metoda GitHub
16: Publishing
24: Program
36: Skema
37: API v3
38: API v4
25: Optimasi
39: Plugin
40: Redirect
41: Sub Modul
42: Situs GitHub
43: Jekyll/Liquid
26: Collections
44: Size
45: Form
46: Hooks
47: Big Size
48: Interface
49: Branching
50: Application
{17}: Package
27: Bagan
51: Attribute
52: Artifacts
53: Method
54: Model
55: Trace
56: Track
28: Diagram
57: Flowchart
58: Sequence
59: Grammar
60: Channel
61: Route
62: Tree
{29}:Mapping
63: Sizing
64: Sorting
65: Listener
66: Looping
67: Capturing
{68}:Directions
Karena basis 18 ke 30 adalah tujuhbelas (17) dan duapuluh sembilan (29), sedangkan basis 69 objek dari 29 adalah enampuluh delapan (68) maka jumlah karakter semuanya akan ada 114:
- Input (12) + Query (15) + Result (19) + Ouput (22) = Total 68 Pages
Pada angka 13 sd 29 akan ada tepat 17 angka lanjut ke angka 51 via 27 dimana selisih di 10 ke 50, jika kita hitung dari angka 9 di 38, 10 di 17, 11 di 27, 12 di 51 maka akan berujung 29 di 68.
The smallest prime average of seven consecutive primes: 7, 11, 13, 17, 19, 23, 29.
Skema inilah yang saya maksud dengan 111+3 yang diproses via prima kembar 11 dan 13 dimana output di angka 17 dan 29 merupakan formasi dasar dari projek ini yaitu Formasi-1729.
Scheme 13:9
===========
(1){1-7}: 7’
(1) 8-13: 6‘
(1)14-19: 6‘
------------- 6+6 -------
(2)20-24: 5’ |
(2)25-29: 5’ |
------------ 5+5 -------
(3)30-36: 7:{70,30,100}|
------------ |
(4)37-48: 12• --- |
(5)49-59: 11° | |
--}30° 30• |
(6)60-78: 19° | |
(7)79-96: 18• --- |
-------------- |
(8)97-109: 13 |
(9)110-139:{30}=5x6 <----x-- (129/17-139/27)
--
{43}
Skema ini berlaku bagi input yang jumlahnya tujuh (7) dan formasinya valid untuk dijadikan objek dengan format 70,30,100 (lihat baris 3. 30-36) yang diproses sebagai format (7,13,19).
Saya putuskan untuk mengambil Tujuh (7) Kasus Milenial sebagai objeknya untuk dialokasikan di id: (10,11,12,14,15,26 dan 28) dimana mereka akan diproses oleh 7xid: 30 sd 36 ke id: 27 via 17.
Sesuai yang kita sudah bahas mereka akan berlaku sebagai unit integrasi dimana urutan setiap kasus dalam tahap implementasi ke pemrograman adalah seperti ini:
- ID-51 (Attribute): BSD Conjecture (Kurva Elips)
- ID-52 (Artifacts): Hodge Conjecture (Topologi)
- ID-53 (Method): Yang–Mills and Mass Gap (Partikel)
- ID-54 (Model): Navier–Stokes (Turbulensi)
- ID-55 (Trace): Riemann Hypothesis (Bilangan)
- ID-56 (Track): P vs NP Problem (Kerumitan)
- Φ(11,13) = Φ(1,2,3) + Φ(4,2) = 123 + 42 = 165
Karenanya kita setel 7xid: 30 ke 36 berdasarkan formasi True Prime Pairs berawal pasangan prima pertama 5 dan 7 yang polanya tergabung di angka limapuluh tujuh (57) tepat di 5xid: 79 ke 83:
id: 57
---+-----+-----
1 | 1 |{15} Δ14 --------------» 79 = 22th prime
---+-----+-----
2 | 16 | 17 Δ1 ---------------» 80
---+-----+----- } Δ3
3 |{18} | 20 Δ2 ---------------» 81 > β(81) = β(57) = 4
---+-----+----- } Δ 10
4 | 21 | 24 Δ3 ---------------» 82
---+-----+----- } Δ7
5 | 25 |{29} Δ4 ---------------» 83 = 23th prime
---+-----+-----
15 |
Angka 57 disini dapat diartikan sebagai transkrip 5 vs 7 dari 12 repository utama ke Skema-12 otomatis merepresentasikan format (1,2,3) vs (4,2) dari 114 repository secara keseluruhan.
#8 |------- 5® --------|------------ 7® --------------|
| 1 |-------------- 77 = 4² + 5² + 6² -------------|
------+---|---+---+---+---+---+---+---+---+----+----+----+
repo |{1}|{2}| 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |{12}| 1,77
------+---|---+---+---+---+---+---+---+---+----+----+----+
user | 7 | - | - | - | - | 7 | 8 | - | - | 8 | 8 | 3 |
------+---|---+---+---+---+---+---+---+---+----+----+----+ 7,78
main | - | 9 | 7 | 9 | 6 | - | - | 8 | 5 | - | - | - |
------+---|---+---+---+---+---+---+---+---+----+----+----+
Δ | Δ | Δ | Δ
Φ17|Φ29 | 96-99| 100 - 123 ({24})
|--- A,T,G,C ---| | └── 100 - 103 (4x) » 100
Δ 2x2 = 4x |------- 2x3 = 6x -------| └── 104 - 109 (6x) » 30
{98} | └── 110 - 123 (14x)» 70
Pada tahap awal di id: 30 sd 36 ini kita terapkan Flowchart untuk simulasi proses dari basis DNA (70,30,100) menuju proses 29 ke 11 dan 30 ke 15 dari 6 dan 9 via 6x6 atau 36 ke 96.
Disini kita satukan dengan seluruh ikatan yang tentunya adalah jumlah keduanya yaitu 100 maka jumlah dari basis DNA yaitu Pospat, Gula dan Nukeotida adalah 200 dengan format (70,30,100).
- π(96) = 96/4 = 24
Dengan uraian² di atas maka kita dapat buat Komposisi Json untuk kita cek susunan angkanya via diagram² sehingga outputnya terintegrasi. Detilnya bisa Anda simak di Publishing.
Angka 26 merupakan proyeksi dari angka 2 dan 6 maka selisih 227 ke 286 objek dari angka dua (2) ada di angka 59 ke 60 akan tampil di id: 4.
id: 4
---+-----+-----
1 | {1} |{43}
---+-----+-----
2 | 44 |{57}
---+-----+-----
3 | 58 | 59
---+-----+-----
4 | 60 | 104
---+-----+-----
5 | 105 |{115}
---+-----+-----
6 |{116}| 134
---+-----+-----
7 | 135 | 162
---+-----+-----
8 | 163 | 175
---+-----+-----
9 | 176 |{176}
---+-----+-----
id: 18
---+-----+-----
1 | 1 | 5 ----
---+-----+----- |
2 | 6 | 8 |
---+-----+----- | 2nd
3 | 9 | 26 |
---+-----+----- |
4 | 27 | 28 -{3}¤
---+-----+----- | 3rd
5 | 29 | 31 ----
---+-----+-----
6 | 32 | 32 ----
---+-----+----- |
7 | 33 | 44 |
---+-----+----- | 4th
8 | 45 | 46 |
---+-----+----- |
9 | 47 | 49 -{6}¤
---+-----+----- | 5th
10 | 50 | 50 ----
---+-----+-----
11 | 51 | 53 ----
---+-----+----- |
12 | 54 | 59 |
---+-----+----- | 6th
13 | 60 | 82 |
---+-----+----- |
14 | 83 | 102 -{9}¤
---+-----+----- | 7th
15 | 103 | 110 ----
---+-----+-----
id:58
---+-----+-----+
1 | 1 | {4} | 4¤
---+-----+-----+ } 13¤
2 | {5} | 13 | 9¤ } 31¤
---+-----+-----+ } 18¤
3 | 14 |{22} | 9¤
---+-----+-----+
Dengan demikian pada formasi bagan ini akan terhimpun semua komposisi objek dari Prime-114 dimana pewarisannya akan kita alihkan ke bagan dengan id: 59.
{17}: Package
27: Bagan
51: Attribute 15
52: Artifacts 25
53: Method 35
54: Model 45
55: Trace 55
56: Track {65} -----
28: Diagram Δ |
57: Flowchart 75 |
58: Sequence 85 |
59: Grammar 95 |
60: Channel >> 6x10 >> 06 |
61: Route 16 |
62: Tree 26 |
{29}:Mapping Δ |
63: Sizing 36--{9}--¤
64: Sorting 46 |
65: Listener {56} -----
66: Looping 66
67: Capturing 76
68: Directions >> Δ22 >> 86 >> Δ(4+18)
Formasi Δ22 ini akan menjadi komposisi input kembali ke angka 17 sehingga menjadi Skema in -out. Berikutnya kita bahas bagaimana hal ini bisa terjadi.
id: 6
---+-----+-----+-----+-----+
1 | 72 | 1 | 73 | 74 |-----------------
---+-----+-----+-----+-----+ |
2 | 20 | 74 | 94 | 168 |----------- |
---+-----+-----+-----+-----+ | |
3 | 18 | 95 | 113 | 208 |----- | |
---+-----+-----+-----+-----+ | | |
4 | 7 | 114 | 121 | 235 |- 7 |{5} | {1} | 61 = 18th prime
---+-----+-----+-----+-----+ | | |
5 | 13 | 122 | 135 | 257 |----- | |
---+-----+-----+-----+-----+ | |
6 | 19 | 136 | 155 | 291 |----------- |
---+-----+-----+-----+-----+ |
7 | {9}|{156}|{165}| 321 |----------------
---+-----+-----+-----+-----+
Kedua formasi ini akan bergabung di Bagan Sequence sehingga memunculkan konfigurasi dari angka (2) yang merepresentasikan ujung framing dari seluruh objek dari 114 angka dasar.
- 176 + 110 = 286 = 22 x 13
id: 2
---+-----+-----+-----+-----+
1 |{19} | 1 |{20} | 21 |-----------------------
---+-----+-----+-----+-----+ |
2 | 18 | 21 | 39 | 60 |----------------- |
---+-----+-----+-----+-----+ | |
3 | 63 | 40 | 103 |{143}|----------- | |
---+-----+-----+-----+-----+ | | |
4 | 37 | 104 | 141 | 245 |----- | | |
---+-----+-----+-----+-----+ | | | |
5 | 10 | 142 | 152 | 294 |-{10}|{13} |{12} |{12} |{18}
---+-----+-----+-----+-----+ | | | |
6 | 24 | 153 |{177}| 332 |----- | | |
---+-----+-----+-----+-----+ | | |
7 | 75 | 178 | 253 | 431 |----------- | |
---+-----+-----+-----+-----+ | |
8 | 30 | 254 | 284 | 538 |----------------- |
---+-----+-----+-----+-----+ |
9 | 1 | 285 | 286 |{571}|-----------------------
===+=====+=====+=====+=====+
45 |{277}|
---+-----+
Karena formasi 111+3 ini mulai dari angka 2, totalnya repdigit, tepat di angka 7 yaitu 11x7 atau 77. Dengan demikian skema 111 objek pada angka 12 akan menjadi basis ke 114 angka dasar.
- 5 + 2 + 58 + 35 = 5 + 60 + 35 = 65 + 35 = 100
id: 26
---+-----+-----+-----+-----+
1 | {5}| 1 | 6 | 7 |----------------------------
---+-----+-----+-----+-----+ |
2 | {2}| 7 | 9 | 16 |---------------------- |
---+-----+-----+-----+-----+ | |
3 | {58}| 10 | 68 | 78 |---------------- | |
---+-----+-----+-----+-----+ | | |
4 | {35}| 69 | 104 | 173 |---------- | | |
---+-----+-----+-----+-----+ | | | |
5 | 17 | 105 | 122 | 227 | | | | |
---+-----+-----+-----+-----+- Cross 17 Δ26|43Δ30|13Δ17|30
6 | 17 | 123 | 140 | 263 | | | | |
---+-----+-----+-----+-----+ | | | |
7 | 18 | 141 | 159 | 300 |---------- | | |
---+-----+-----+-----+-----+ | | |
8 | 15 | 160 | 175 | 335 |---------------- | |
---+-----+-----+-----+-----+ | |
9 | 15 | 176 | 191 | 367 |---------------------- |
---+-----+-----+-----+-----+ |
10 | 35 | 192 | 227 | 419 |----------------------------
---+-----+-----+-----+-----+
Maka angka 22 merupakan unsur penting sehingga polanya kita bagi menjadi empat (4) bagian yang terdiri dari elemen 4 vs 18 dengan format 4 ke (1,3) vs 18 ke (3,6,9) seperti berikut ini:
Alurnya akan ada tujuh (7) yaitu alur 1 sd 6 berikut alur dengan alur 1 ke 2 via format 4 ke (1,3). Karena objeknya ada 22 maka 7 alur ini akan mewakili 227 objek dari angka 26.
True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+------
| {1} | {5}
1 +-----+
| 2 | {7}
-----+-----+--- } 36
| 3 | 11
2 +-----+
| 4 | 13
-----+-----+------
| 5 | 17
3 +-----+ } 36
| 6 | 19
-----+-----+------
Proses yang diinisiasi oleh angka prima ke-5 yaitu 11 ke angka prima ke-16 yaitu 53 dilakukan hingga muncul korelasi natural pada angka 192 sebagai jumlah dari 53 dan 139.
- 192 = 139 + 53
- 18 + 43 = 61 = 18th prime
True Prime Pairs:
(5,7), (11,13), (17,19)
|--- 6' --|-- 12' --|--{18'}--|--{29}---|--{30}---|--{61}---|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 |{13}| 17 |{19}| 17 | 12 | 11 | 19 |{18}|{43}|
+----+----+----+----+----+----+----+----+----+----+----+----+
|----- 23 -----|--- 30 --|--------------- 139 --------------|
- 165 - 4 = 161
id: 6
---+-----+-----+-----+-----+
1 | 72 | 1 | 73 | 74 |-----------------
---+-----+-----+-----+-----+ |
2 | 20 | 74 | 94 | 168 |----------- |
---+-----+-----+-----+-----+ | |
3 | 18 | 95 | 113 | 208 |----- | |
---+-----+-----+-----+-----+ | | |
4 | 7 | 114 | 121 | 235 |- {7}| 5 | 1 | {61} = 18th prime
---+-----+-----+-----+-----+ | | |
5 | 13 | 122 | 135 | 257 |----- | |
---+-----+-----+-----+-----+ | |
6 | 19 | 136 | 155 | 291 |----------- |
---+-----+-----+-----+-----+ |
7 | 9 | 156 | 165 | 321 |----------------
---+-----+-----+-----+-----+
Skema ini sebenarnya adalah 6 ke 7 dimana gabungannya yaitu 67 adalah prima ke-19 sehingga polanya akan berulang apapun inputnya. Berikutnya kita bahas mengapa itu bisa terjadi.
Sebenarnya enam (6) menyimpan angka berulang 1, 4, 2, 8, 5 dan 7. Anda bagi angka berapapun dengan tujuh (7) maka maka Anda akan jumpai keenam angka yang berulang ini.
1/7 = 0,142857142857142857142857.. infinity
Dalam formasi ini terkandung amaran sehubungan dengan angka 161 yang kita bahas di uraian sebelumnya bahwasanya angka ini merupakan vektor yang dibawa oleh angka 6 ke 7.
layer| i | f
-----+-----+------
| 1 | ..
1 +-----+
| 2 | (7) >> {161}
-----+-----+------
| 3 | ..
2 +-----+
| 4 | (13)
-----+-----+------
| 5 | ..
3 +-----+
| 6 | (19)
-----+-----+------
Kaitannya adalah pada angka 1,4,2,8,5,7 tepatnya di antara kombinasi dari mereka ke angka 28 ke 57 ada pola yang berlaku pada selisih yaitu di angka duapuluh sembilan (29).
7P:(142857)
1421 = 14 & 21
14 x 2 = 21 + 7 = 28
28 x 2 + 1 = 28 + 29 = 57
Secara implisit hubungan ini sudah saya uraikan pada pembahasan tentang mapping yang pada prinsipnya dia memilah pola angka 18 kedalam tiga (3) alur:
id: 18
---+-----+-----
1 | 1 | 5 ----
---+-----+----- |
2 | 6 | 8 |
---+-----+----- | 2nd
3 | 9 | 26 |
---+-----+----- |
4 | 27 |{28} --3-¤
---+-----+----- | 3rd
5 |{29} | 31 ----
---+-----+-----
6 | 32 | 32 ----
---+-----+----- |
7 | 33 | 44 |
---+-----+----- | 4th
8 | 45 | 46 |
---+-----+----- |
9 | 47 |{49} -{6}¤
---+-----+----- | 5th
10 |{50} | 50 ----
---+-----+-----
11 | 51 | 53 ----
---+-----+----- |
12 | 54 | 59 |
---+-----+----- | 6th
13 | 60 | 82 |
---+-----+----- |
14 | 83 |{102} --9-¤
---+-----+----- | 7th
15 |{103}| 110 ----
---+-----+-----
Alur ini pada ujungnya akan membawa kita ke angka 102 dan 103 yang merupakan komponen penting dalam formasi True Prime Pairs yang merupakan basis dari projek ini.
Twin Primes:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+------
| 1 | 5
1 +-----+ } 12
| 2 | 7
-----+-----+------ } {36}
| 3 | 11
2 +-----+ } 24
| 4 | 13
-----+-----+-------------------
| 5 | 17
3 +-----+ } {36}
| 6 | 19
-----+-----+------
Permutation:
66 = 6 & 6
6 + 6 = 12
5 + 7 = 12 = d(3)
11 + 13 = 24 = d(6)
17 + 19 = 6 x 6 = d(9)
6 + 6 » d(3,6,9) » 6 x 6
Disini akan ada kaitan yang signifikan antara angka 29 ke 36. Untuk menjelaskannya maka kita mulai dengan membagi formasi simetris (36,36) di atas lebih kedalam lagi seperti ini:
layer | node | sub | i | f
------+------+-----+----------
| | | 1 |
| | 1 +-----+
| 1 | | 2 | (5)
| |-----+-----+
| | | 3 |
1 +------+ 2 +-----+----
| | | 4 |
| +-----+-----+
| 2 | | 5 | (7)
| | 3 +-----+
| | | 6 |
------+------+-----+-----+------ } (36)
| | | 7 |
| | 4 +-----+
| 3 | | 8 | (11)
| +-----+-----+
| | | 9 |
2 +------| 5 +-----+-----
| | | 10 |
| |-----+-----+
| 4 | | 11 | (13)
| | 6 +-----+
| | | 12 |
------+------+-----+-----+------------------
| | | 13 |
| | 7 +-----+
| 5 | | 14 | (17)
| |-----+-----+
| | | 15 |
3 +------+ 8 +-----+----- } (36)
| | | 16 |
| |-----+-----+
| 6 | | 17 | (19)
| | 9 +-----+
| | | 18 |
------|------|-----+-----+------
Yang mungkin Anda tidak sadari adalah bahwa pada layar pertama akan berlaku juga formasi True Prime Pairs yang polanya mewakili formasi secara keseluruhan dari tiga (3) layar.
layer | node | sub | i | f
------+------+-----+----------
| | | 1 | ..
| | 1 +-----+
| 1 | | 2 | {7} (5)
| |-----+-----+
| | | 3 | ..
1 +------+ 2 +-----+----
| | | 4 | {13}
| +-----+-----+
| 2 | | 5 | .. (7)
| | 3 +-----+
| | | 6 | {19}
------+------+-----+-----+------
| | | 7 |
| | 4 +-----+
| 3 | | 8 | (11)
| +-----+-----+
| | | 9 |
2 +------| 5 +-----+-----
| | | 10 |
| |-----+-----+
| 4 | | 11 | (13)
| | 6 +-----+
| | | 12 |
------+------+-----+-----+------
| | | 13 |
| | 7 +-----+
| 5 | | 14 | (17)
| |-----+-----+
| | | 15 |
3 +------+ 8 +-----+-----
| | | 16 |
| |-----+-----+
| 6 | | 17 | (19)
| | 9 +-----+
| | | 18 |
------|------|-----+-----+------
Dengan framing indek 18 maka angka 19 bergabung ke formasi angka satu (1). Ini menjelaskan kenapa bilangan prima itu tidak dimulai dari angka satu (1) melainkan angka dua (2).
- d(19) = d(1+9) = d(10) = d(1+0) = d(1)
layer | node | sub | i | f
------+------+-----+----------
| | | {1} |{2x}
| | 1 +-----+
| 1 | | 2 | 7 (5)
| |-----+-----+
| | | 3 | ..
1 +------+ 2 +-----+----
| | | 4 | 13
| +-----+-----+
| 2 | | 5 | .. (7)
| | 3 +-----+
| | | 6 | 19
------+------+-----+-----+------
| | | {7} | {1x}
| | 4 +-----+
| 3 | | 8 | (11)
| +-----+-----+
| | | 9 |
2 +------| 5 +-----+-----
| | | 10 |
| |-----+-----+
| 4 | | 11 | (13)
| | 6 +-----+
| | | 12 |
------+------+-----+-----+------
| | | {13}| {1x}
| | 7 +-----+
| 5 | | 14 | (17)
| |-----+-----+
| | | 15 |
3 +------+ 8 +-----+-----
| | | 16 |
| |-----+-----+
| 6 | | 17 | (19)
| | 9 +-----+
| | | 18 |
------|------|-----+-----+------
| {19}| ----> 1
Itu sebabnya maka posisi angka prima ke-1 dari True Prime Pairs yaitu lima (5) didorong ke angka 2 dan 3 dengan vektor yang sama dimana 19 akan membaginya dengan mengambil angka satu (1) bagi dirinya sendiri sedangkan sisanya ke angka 11 dan 17 yang jumlahnya tepat 28 ke 29.
layer | node | sub | i | f
------+------+-----+----------
| | | 1 | 2x -----
| | 1 +-----+ |
| 1 | | 2 | 7 (5)
| |-----+-----+ |
| | | 3 | {3x} ---¤
1 +------+ 2 +-----+---- |
| | | 4 | 13 |
| +-----+-----+ |
| 2 | | 5 | {2x} ---¤ (7)
| | 3 +-----+
| | | 6 | 19
------+------+-----+-----+------
| | | 7 | 1x
| | 4 +-----+
| 3 | | 8 | (11)
| +-----+-----+
| | | 9 |
2 +------| 5 +-----+-----
| | | 10 |
| |-----+-----+
| 4 | | 11 | (13)
| | 6 +-----+
| | | 12 |
------+------+-----+-----+------
| | | 13 | 1x
| | 7 +-----+
| 5 | | 14 | (17)
| |-----+-----+
| | | 15 |
3 +------+ 8 +-----+-----
| | | 16 |
| |-----+-----+
| 6 | | 17 | (19)
| | 9 +-----+
| | | 18 |
------|------|-----+-----+------
Proses berikutnya bisa kita analogikan dengan proses pada teori fusi nuklir dimana tahapan di angka lima (5) akan berlanjut ke angka tujuh (7) yang meneruskannya ke angka² berikutnya.
layer | node | sub | i | f
------+------+-----+----------
| | | 1 | 2x
| | 1 +-----+
| 1 | | 2 | 7
| |-----+-----+
| | | 3 | 3x ----
1 +------+ 2 +-----+---- |
| | | 4 | 13 5x ----
| +-----+-----+ | |
| 2 | | 5 | 2x ---- (7)
| | 3 +-----+ |
| | | 6 | 19 |
------+------+-----+-----+------ |
| | | 7 | 1x |
| | 4 +-----+ |
| 3 | | 8 | 1x ---- | (11)
| +-----+-----+ | |
| | | 9 | .. {2x}----
2 +------| 5 +-----+----- |
| | | 10 | 1x ----
| |-----+-----+
| 4 | | 11 | (13)
| | 6 +-----+
| | | 12 |
------+------+-----+-----+------
| | | 13 | 1x
| | 7 +-----+
| 5 | | 14 | (17)
| |-----+-----+
| | | 15 |
3 +------+ 8 +-----+-----
| | | 16 |
| |-----+-----+
| 6 | | 17 | (19)
| | 9 +-----+
| | | 18 |
------|------|-----+-----+------
Nah yang jadi pertanyaan tentunya kenapa mereka itu tidak blow up seperti yang terjadi pada reaksi nuklir. Disinilah fungsi angka 17 dan 29 akan memainkan peranan.
layer | node | sub | i | f
------+------+-----+----------
| | | 1 | 2,3 <-{2x}= (13-11)x --
| | 1 +-----+ |
| 1 | | 2 | 7 |
| |-----+-----+ |
| | | 3 | 3x ---- |
1 +------+ 2 +-----+---- | |
| | | 4 | 13 5x ---- |
| +-----+-----+ | | |
| 2 | | 5 | 2x ---- 7x + 6x = 13x
| | 3 +-----+ | |
| | | 6 | 19 | |
------+------+-----+-----+------ | |
| | | 7 | 1x | |
| | 4 +-----+ | |
| 3 | | 8 | 1x ---- | |
| +-----+-----+ | | |
| | | 9 | .. 2x ---- |
2 +------| 5 +-----+----- | |
| | | 10 | 1x ---- |
| |-----+-----+ |
| 4 | | 11 | {4x} = (11-7)x ---------
| | 6 +-----+
| | | 12 |
------+------+-----+-----+------
| | | 13 | 1x
| | 7 +-----+
| 5 | | 14 | (17)
| |-----+-----+
| | | 15 |
3 +------+ 8 +-----+-----
| | | 16 |
| |-----+-----+
| 6 | | 17 | (19)
| | 9 +-----+
| | | 18 |
------|------|-----+-----+------
Skemanya bisa Anda perhatikan pada tiga (2) bilangan prima (7,13,19) yang merupakan angka² batas dari True Prime Pairs dimana mereka masing² hanya mengikat secara tunggal.
layer | node | sub | i | k | f
------+------+-----+-----+-----+-----
| | | 1 | 1,2 | 2,3 -- 2x = (13-11)x --
| | 1 +-----+-----+ |
| 1 | | 2 | 3 | 7 |
| |-----+-----+-----+ |
| | | 3 | 4,6 | 3x ---- |
1 +------+ 2 +-----+-----+ | |
| | | 4 | {7} | 13 5x ---- |
| +-----+-----+-----+ | | |
| 2 | | 5 | 8,9 | 2x ---- 7x + 6x = 13x
| | 3 +-----+-----+ | |
| | | 6 | 10 | 19 | |
------+------+-----+-----+-----+ | |
| | | 7 | 11 | 1x | |
| | 4 +-----+-----+ | |
| 3 | | 8 | 12 | 1x ---- | |
| +-----+-----+-----+ | | |
| | | 9 | {13}| 1x 2x ---- |
2 +------| 5 +-----+-----+ | |
| | | 10 | 14 | 1x ---- |
| |-----+-----+-----+ |
| 4 | | 11 |15,18| 4x = (11-7)x ----------
| | 6 +-----+-----+
| | | 12 | {19}| 1x
------+------+-----+-----+-----+
| | | 13 | 20 | 1x
| | 7 +-----+-----+
| 5 | | 14 | (17)
| |-----+-----+
| | | 15 |
3 +------+ 8 +-----+-----
| | | 16 |
| |-----+-----+
| 6 | | 17 | (19)
| | 9 +-----+
| | | 18 |
------|------|-----+-----+------
Perhatikan bahwa layar ke-2 ditutup oleh ururan ke-19. Berdasarkan P(7): 142857, faktor tunggal berikutnya akan ada di empat (4) posisi pada angka 19+4 yaitu 23, ditutup urutan ke-28 dan 57-28 atau ke-29 sehingga akan tersisa persis enam (6) posisi yang menggenapi skema (7,13,19).
layer | node | sub | i | k | f
------+------+-----+-----+-----+-----
| | | 1 | 1,2 | 2,3 -- 2x = (13-11)x --
| | 1 +-----+-----+ |
| 1 | | 2 | 3 | 7 |
| |-----+-----+-----+ |
| | | 3 | 4,6 | 3x ---- |
1 +------+ 2 +-----+-----+ | |
| | | 4 | 7 | 13 5x ---- |
| +-----+-----+-----+ | | |
| 2 | | 5 | 8,9 | 2x ---- {7x} + 6x = {13x}
| | 3 +-----+-----+ | |
| | | 6 | 10 | 19 | |
------+------+-----+-----+-----+ | |
| | | 7 | 11 | 1x | |
| | 4 +-----+-----+ | |
| 3 | | 8 | 12 | 1x ---- | |
| +-----+-----+-----+ | | |
| | | 9 | 13 | 1x 2x ---- |
2 +------| 5 +-----+-----+ | |
| | | 10 | 14 | 1x ---- |
| |-----+-----+-----+ |
| 4 | | 11 |15,18| 4x = (11-7)x ----------
| | 6 +-----+-----+
| | | 12 | {19}| 1x
------+------+-----+-----+-----+
| | | 13 | 20 | 1x
| | 7 +-----+-----+
| 5 | | 14 |21,22| 2x = (19-17)x ---------
| |-----+-----+-----+ |
| | | 15 | {23}| 1x 6x + 13x = {19x}
3 +------+ 8 +-----+-----+ |
| | | 16 |24,27| 4x = (17-13)x ---------
| |-----+-----+-----+
| 6 | | 17 | {28}| 1x
| | 9 +-----+-----+
| | | 18 | {29}| 1x
------|------|-----+-----+------
Faktor yang berada di kelompok harus dalam angka yang berurutan dengan angka yang berada di sentral. Dengan itu kita dapat tentukan untuk kelompok 5x sebagai berikut:
layer | node | sub | i | k | f
------+------+-----+-----+-----+-----
| | | 1 | 1,2 | 2,3 -- 2x = (13-11)x --
| | 1 +-----+-----+ |
| 1 | | 2 | 3 | 7 |
| |-----+-----+-----+ |
| | | 3 | 4,6 | {10,11,12}-- |
1 +------+ 2 +-----+-----+ | |
| | | 4 | 7 | 13 5x --- |
| +-----+-----+-----+ | | |
| 2 | | 5 | 8,9 | {14,15}---- 7x + 6x = 13x
| | 3 +-----+-----+ | |
| | | 6 | 10 | 19 | |
------+------+-----+-----+-----+ | |
| | | 7 | 11 | 1x | |
| | 4 +-----+-----+ | |
| 3 | | 8 | 12 | 1x ---- | |
| +-----+-----+-----+ | | |
| | | 9 | 13 | 1x 2x ----- |
2 +------| 5 +-----+-----+ | |
| | | 10 | 14 | 1x ---- |
| |-----+-----+-----+ |
| 4 | | 11 |15,18| 4x = (11-7)x ----------
| | 6 +-----+-----+
| | | 12 | 19 | 1x
------+------+-----+-----+-----+
| | | 13 | 20 | 1x
| | 7 +-----+-----+
| 5 | | 14 |21,22| 2x = (19-17)x ---------
| |-----+-----+-----+ |
| | | 15 | 23 | 1x 6x + 13x = 19x
3 +------+ 8 +-----+-----+ |
| | | 16 |24,27| 4x = (17-13)x ---------
| |-----+-----+-----+
| 6 | | 17 | 28 | 1x
| | 9 +-----+-----+
| | | 18 | 29 | 1x
------|------|-----+-----+------
Karena berada dalam bangun simetris yang sama maka di layar-2 berlaku proses layar-1 yang menjadi satu (1) unit terhadap 19 di layar ke-2 sehingga diawali di angka 19 ke 20.
Sampai disini tentunya Anda bisa paham kenapa pola dari Chart Fungsi Zeta itu pusaran²nya ada pada batasan di angka (18,19,20). Keluar dikit aja, blow up deh..
Berikutnya kita lanjut sampai ke angka 28 dan 29.
Angka 20 ini merupakan unit dari dari angka (2,3) di layar-1 dimana selisihnya ke angka tujuh (7) adalah di angka enam (6). Maka angka berikutnya adalah (26,27,28).
layer | node | sub | i | k | f
------+------+-----+-----+-----+-----
| | | 1 | 1,2 | 2,3 <- 2x = (13-11)x --
| | 1 +-----+-----+ |
| 1 | | 2 | 3 | 7 |
| |-----+-----+-----+ |
| | | 3 | 4,6 | 10,11,12 -- |
1 +------+ 2 +-----+-----+ | |
| | | 4 | 7 | 13 5x --- |
| +-----+-----+-----+ | | |
| 2 | | 5 | 8,9 | 14,15 ----- | |
| | 3 +-----+-----+ | |
| | | 6 | 10 | 19 | |
------+------+-----+-----+-----+-------- 7x + 6x = 13x
| | | 7 | 11 | {20} | |
| | 4 +-----+-----+ | |
| 3 | | 8 | 12 | {26} ----- | |
| +-----+-----+-----+ | | |
| | | 9 | 13 | {27} 2x ----- |
2 +------| 5 +-----+-----+ | |
| | | 10 | 14 | {28} ---- |
| |-----+-----+-----+ |
| 4 | | 11 |15,18| 4x = (11-7)x ----------
| | 6 +-----+-----+
| | | 12 | 19 | 1x
------+------+-----+-----+-----+
| | | 13 | 20 | 1x
| | 7 +-----+-----+
| 5 | | 14 |21,22| 2x = (19-17)x ---------
| |-----+-----+-----+ |
| | | 15 | 23 | 1x 6x + 13x = 19x
3 +------+ 8 +-----+-----+ |
| | | 16 |24,27| 4x = (17-13)x ---------
| |-----+-----+-----+
| 6 | | 17 | 28 | 1x
| | 9 +-----+-----+
| | | 18 | 29 | 1x
------|------|-----+-----+------
Dengan adanya angka 27 dan 28 maka proses P(7): 142857 kembali dilakukan maka berikutnya adalah (29,30,31,32). Karena angka 32 merupakan angka yang ujung maka dia diproses dengan angka empat (4) sehingga layar-2 ditutup di angka 36.
layer | node | sub | i | k | f
------+------+-----+-----+-----+-----
| | | 1 | 1,2 | 2,3 <- 2x = (13-11)x --
| | 1 +-----+-----+ |
| 1 | | 2 | 3 | 7 |
| |-----+-----+-----+ |
| | | 3 | 4,6 | 10,11,12 -- |
1 +------+ 2 +-----+-----+ | |
| | | 4 | 7 | 13 5x --- |
| +-----+-----+-----+ | | |
| 2 | | 5 | 8,9 | 14,15 ----- | |
| | 3 +-----+-----+ | |
| | | 6 | 10 | 19 | |
------+------+-----+-----+-----+-------- 7x + 6x = 13x
| | | 7 | 11 | 20 | |
| | 4 +-----+-----+ | |
| 3 | | 8 | 12 | 26 ----- | |
| +-----+-----+-----+ | | |
| | | 9 | 13 | 27 2x ----- |
2 +------| 5 +-----+-----+ | |
| | | 10 | 14 | 28 ----- |
| |-----+-----+-----+ |
| 4 | | 11 |15,18| {29,30,31,32} <--4x-----
| | 6 +-----+-----+
| | | 12 | 19 | {36}
------+------+-----+-----+-----+-------
| | | 13 | 20 | 1x
| | 7 +-----+-----+
| 5 | | 14 |21,22| 2x = (19-17)x ---------
| |-----+-----+-----+ |
| | | 15 | 23 | 1x 6x + 13x = 19x
3 +------+ 8 +-----+-----+ |
| | | 16 |24,27| 4x = (17-13)x ---------
| |-----+-----+-----+
| 6 | | 17 | 28 | 1x
| | 9 +-----+-----+
| | | 18 | 29 | 1x
------|------|-----+-----+------
Layar-1 dan -2 berlaku dua (2) unit bagi layar-3 dimana formasi angka (2,3) ke 7 tidak lagi berlaku sehingga jumlah angka 32 dan 36 atau 68 sekaligus merupakan ujung layar-3.
layer | node | sub | i | k | f
------+------+-----+-----+-----+-----
| | | 1 | 1,2 | 2,3 <- 2x = (13-11)x --
| | 1 +-----+-----+ |
| 1 | | 2 | 3 | 7 |
| |-----+-----+-----+ |
| | | 3 | 4,6 | 10,11,12 -- |
1 +------+ 2 +-----+-----+ | |
| | | 4 | 7 | 13 5x --- |
| +-----+-----+-----+ | | |
| 2 | | 5 | 8,9 | 14,15 ----- | |
| | 3 +-----+-----+ | |
| | | 6 | 10 | 19 | |
------+------+-----+-----+-----+-------- 7x + 6x = 13x
| | | 7 | 11 | 20 | |
| | 4 +-----+-----+ | |
| 3 | | 8 | 12 | 26 ----- | |
| +-----+-----+-----+ | | |
| | | 9 | 13 | 27 2x ----- |
2 +------| 5 +-----+-----+ | |
| | | 10 | 14 | 28 ----- |
| |-----+-----+-----+ |
| 4 | | 11 |15,18| 29,30,31,32 <----4x----
| | 6 +-----+-----+
| | | 12 | 19 | 36
------+------+-----+-----+-----+-------
| | | 13 | 20 | {38}
| | 7 +-----+-----+
| 5 | | 14 |21,22| {40,41} = (19-17)x ----
| |-----+-----+-----+ |
| | | 15 | 23 | {42} 6x + 13x = 19x
3 +------+ 8 +-----+-----+ |
| | | 16 |24,27| {43,44,45,46} <-- 4x --
| |-----+-----+-----+
| 6 | | 17 | 28 | {50} = 46 + 4
| | 9 +-----+-----+
| | | 18 | 29 | {68} = 32 + 36
------|------|-----+-----+------
Ketiga layar merupakan tiga (3) unit bagi proses berikutnya sehingga mengantarkannya sebagai vektor bagi angka (2,3) di angka 68 ke 71 tepat persis seperti yang kita sudah bahas.
layer | node | sub | i | k | f
------+------+-----+-----+-----+-----
| | | 1 | 1,2 | {71}=68+3 (2,3) -- 2x --
| | 1 +-----+-----+ |
| 1 | | 2 | 3 | 161 (7) |
| |-----+-----+-----+ |
| | | 3 | 4,6 | 10,11,12 -- |
1 +------+ 2 +-----+-----+ | |
| | | 4 | 7 | 13 5x --- |
| +-----+-----+-----+ | | |
| 2 | | 5 | 8,9 | 14,15 ----- | |
| | 3 +-----+-----+ | |
| | | 6 | 10 | 19 | |
------+------+-----+-----+-----+-------- 7x + 6x = 13x
| | | 7 | 11 | 20 | |
| | 4 +-----+-----+ | |
| 3 | | 8 | 12 | 26 ----- | |
| +-----+-----+-----+ | | |
| | | 9 | 13 | 27 2x ----- |
2 +------| 5 +-----+-----+ | |
| | | 10 | 14 | 28 ----- |
| |-----+-----+-----+ |
| 4 | | 11 |15,18| 29,30,31,32 <----4x----
| | 6 +-----+-----+
| | | 12 | 19 | 36
------+------+-----+-----+-----+-------
| | | 13 | 20 | 38
| | 7 +-----+-----+
| 5 | | 14 |21,22| 40,41 = (19-17)x ------
| |-----+-----+-----+ |
| | | 15 | 23 | 42 6x + 13x = 19x
3 +------+ 8 +-----+-----+ |
| | | 16 |24,27| 43,44,45,46 <-- 4x ---
| |-----+-----+-----+
| 6 | | 17 | 28 | 50 = 46 + 4
| | 9 +-----+-----+
| | | 18 | 29 | {68}
------|------|-----+-----+------
Skema ini akan terus kembali berulang, jadi yang berbeda adalah input dan outputnya sedangkan prosesnya adalah dengan pola yang persis sama. Inilah yang saya sebut dengan Skema in-out.
Pola ini ada di Tabulasi Prime Hexagon via 3x6 dari 18 polarisas angka dua (2) versus 19 putaran yang berpusar di 71 dan berujung 6x19 di angka 114 (yang keluar grup 18 saya tandai bintang).
- 71 = 1 + 30 + (70 - 30) = 1 + 30 + 40
| 1st (Form) | 2nd (Route) | 3rd (Channel) |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
{1} |{19}| - | 31 | 37 | - | - | - | - | - | - | - | - | - | - | 103 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
2 | 20 | 26*| - | 38 | - | - | - | - | - | 74*| - | - | - | 98*| 104*| - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
3 | 21 | 27*| - | 39 | - | - | - | - | - | 75*| - | - | - | 99*| 105*| - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
4 | 22 | 28 | - | 40 | - | - | - | - | - | 76 | - | - | - |100 | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
5 | 23 |{29}| - | 41 | - | - | - | - | - | 77 | - | - | - {101}| - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
6 | 24 | - | - | 42 | - | 54 | - | - | 72 | 78 | - | 90 | 96 | - | - | - | - | 114|
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
7 | 25 | - | - |{43}| - | 55 | - | - | 73 | 79 | - |{91}| 97 | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
8 | - | - | - | 44 | - | 56 | - | - | - | 80 | - | 92 | - | - | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
9 | - | - | - | 45 | - |{57}| - | - | - |{81}| - | 93 | - | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
10 | - | - | - | 46 | 52 | 58 | - | 70 | - | 82 | 88 | 94 | - | - | - | - | 112| - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
11 | - | - | - | 47 | 53 | 59 | - |{71}| - | 83 | 89 | 95 | - | - | - | - | 113| - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
12 | - | - | - | 48 | - | 60 | 66 | - | - | 84 | - | - | - | - | - | 108 | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
13 | - | - | - | 49 | - |{61}| 67 | - | - |{85}| - | - | - | - | - | 109 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
14 | - | - | 32*| 50*| - | 62 | 68*| - | - | 86*| - | - | - | - | - | 110*| - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
15 | - | - | 33*|{51*} - | 63 | 69*| - | - | 87*| - | - | - | - | - | 111*| - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
16 | - | - | 34 | - | - | 64 | - | - | - | - | - | - | - | - | 106 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
17 | - | - | 35 | - | - | 65 | - | - | - | - | - | - | - | - | 107 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
{18} | - | 30 | 36 | - | - | - | - | - | - | - | - | - | - |102 | - | - | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
{19} | 2 | {3}| 4 | {5}| 6 | {7}| 8 | {9}| 10 |{11}| 12 |{13}| 14 |{15}| 16 | 17 | 18 |{19}|
|--------------------------------------------------------- 19¨ -----------------------------|
|--------------------------------------- 13¨ ---------------|
|------------- 7¨ ------------|
|-------- 5¨ -------|
|--- 2¨ --|
Anda bisa lihat bagaimana vektor yang bermula di pusaran di lima (5) titik dengan formasi angka (2,3) secara diagonal 45° membelah komposisi bilangan² prima dengan enam (6) pusaran.
Formasi 1 ke 15 mengambil objek 12 ini di angka tiga (3) yang bloknya tujuh (7). Maka akan ada angka yang dipanggil via repdigit 7(111) yang tak lain adalah sang limapuluh tujuh (57).
- 7(111) = 1117 = 7² + 7¹ + 7° = 49 + 7 + 1 = 57
Base
7 | 10
====+====
1 | 1
2 | 2
3 | 3
4 | 4
5 | 5
6 | 6
10 | 7
20 | 14
50 | 35
60 | 42
100 | 48
110 | 56
111 | {57}
Disini flowchart ambil wilayah terjauh sampai ke angka 29 sebagai prima ke-10 via objeknya. Dari 13 sd 29 tepat 17. Maka semua titik patok ada limabelas (15) sesuai pola 1 ke 15 dari angka 57:
- 57 x 2 = 114 = 17 + 29 + 68
id: 57
---+-----+-----
1 | 1 | 15 Δ14
---+-----+-----
2 | 16 | 17 Δ1
---+-----+----- } Δ3
3 | 18 | 20 Δ2
---+-----+----- } Δ 10
4 | 21 |{24} Δ3
---+-----+----- } Δ7
5 |{25} | 29 Δ4
---+-----+-----
15 |
Detilnya bisa Anda ikuti pada skema expansi hewan ternak di bahasan angka enam (6) tentang alokasi vektor 6x100 dari angka prima ke-114 yaitu 619 kedalam 3 layar via skema 10³ vs 9³:
- Δ prime = 114th prime - 19 = (6 x 19)th prime - 19 = 619 - 19 = 600
Dari formasi bilangan prima ini maka kita dapat menentukan asal muasal angka tujuh (7) yang merupakan pasangan dari angka lima (5) bukan dari 2,3,5 ataupun 7 melainkan 1 dan 6.
Sub | i | β | f
=======+====+=====+======= === === === === === ===
1:1:0 | 1 | 1 | 2 {71} 1 1 | | | |
-------+----+-----+------- --- --- | | | |
1:2:1 | 2 | 2 | 3 {71} | | | | |
-------+----+-----+---- | | | | |
*1:2:2 | 3 | 3 | 7 = 1 + 2x3 | | | | |
-------+----+-----+---- | | | | |
*1:3:3 | 4 | 4 | 10 = 9 + 1 | | | | |
-------+----+-----+---- | | | | |
1:3:4 | 5 | 5 | 11 = 9 + 2 | | | | |
-------+----+-----+---- 9 1‘ | Δ100 |
*1:3:5 | 6 | 6 | 12 = 9 + 3 | | | | |
-------+----+-----+---- | | | | |
*1:4:6 | 7 | 7 | 13 = 9 + 4 | | | | |
-------+----+-----+---- | | | | |
1:4:7 | 8 | 8 | 14 = 9 + 5 | | | | |
-------+----+-----+---- | | | | |
*1:4:8 |{9} | 9 | 15 = 9 + 6 | | | | |
-------+----+-----+---- | | | | |
*1:4:9 |{10}| 10 | 19 = 9 + 10 | | | | |
=======+====+=====+==== === --- 1“ --- |
2:1:0 | 11 | 20 | 20 = 19 + log 10¹ | | | |
-------+----+-----+---- | | | |
2:2:1 | 12 | 30 | 26 = 20 + 2x3 | | | |
-------+----+-----+---- | | | |
*2:2:2 | 13 | 40 | 27 = 26 + 1 | | | |
-------+----+-----+---- | | | |
*2:3:3 | 14 | 50 | 28 = 26 + 2 | | | |
-------+----+-----+---- | | | |
2:3:4 | 15 | 60 | 29 = 26 + 3 9‘ | Δ200 Δ600
-------+----+-----+---- | | | |
*2:3:5 | 16 | 70 | 30 = 26 + 4 | | | |
-------+----+-----+---- | | | |
*2:4:6 | 17 | 80 | 31 = 26 + 5 | | | |
-------+----+-----+---- | | | |
2:4:7 |{18}| 90 | 32 = 26 + 6 | | | |
-------+----+-----+---- | | | |
*2:4:8 |{19}| 100 | 36 = 26 + 10 | | | |
=======+====+=====+==== === --- --- |
*2:4:9 | 20 | 200 | 38 = 36 + log 10² | | |
-------+----+-----+---- | | |
3:1:0 | 21 | 300 | 40 = 36 + 2 x log 10² | | |
-------+----+-----+---- | | |
3:2:1 | 22 | 400 | 41 = 40 + 1 | | |
-------+----+-----+---- | | |
*3:2:2 | 23 | 500 | 42 = 40 + 2 | | |
-------+----+-----+---- | | |
*3:3:3 | 24 | 600 | 43 = 40 + 3 9“ Δ300 |
-------+----+-----+---- | | |
3:3:4 | 25 | 700 | 44 = 40 + 4 | | |
-------+----+-----+---- | | |
*3:3:5 | 26 | 800 | 45 = 40 + 5 | | |
-------+----+-----+---- | | |
*3:4:6 | 27 | 900 | 46 = 40 + 6 | | |
-------+----+-----+---- | | |
3:4:7 |{28}|1000 | 50 = 40 + 10 | | |
=======+====+=====+==== === ==== ----
*3:4:8 |{29}|2000 | 68 = 50 + 3 x (2x3) {10³} Δ600 Δ300
=======+====+=====+==== Δ ====
3:4:9 |{30}|3000 |{71}= 68 + log 10³ ---------¤ Δ900
Penerapan siklus tigapuluh (30) terhadap konfigurasi sembilan (9) dari formasi {3,6,9} dimana dari kedua angka ini akan membentuk formasi Δ900 ke Δ600 yaitu 300 + 900/100 atau 309.
Untuk menjelaskan siklus tiga (3) layar ini sekarang saya ajak Anda kita kembali ke Tabulasi Prime Hexagon. Perhatikan angka² ditandai merah.
| 1st (Form) | 2nd (Route) | 3rd (Channel) |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
1 | 19 | - |{31}| 37 | - | - | - | - | - | - | - | - | - | - | 103 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
2 | 20 |{26}| - | 38 | - | - | - | - | - | 74 | - | - | - | 98 | 104 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
3 | 21 | 27 | - | 39 | - | - | - | - | - | 75 | - | - | - | 99 | 105 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
4 | 22 | 28 | - | 40 | - | - | - | - | - | 76 | - | - | - |100 | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
5 | 23 | 29 | - | 41 | - | - | - | - | - | 77 | - | - | - |101 | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
6 | 24 | - | - | 42 | - | 54 | - | - | 72 | 78 | - | 90 | 96 | - | - | - | - | 114|
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
7 | 25 | - | - | 43 | - | 55 | - | - | 73 | 79 | - | 91 | 97 | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
8 | - | - | - | 44 | - | 56 | - | - | - | 80 | - | 92 | - | - | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
9 | - | - | - | 45 | - | 57 | - | - | - | 81 | - | 93 | - | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
10 | - | - | - | 46 | 52 | 58 | - | 70 | - | 82 | 88 | 94 | - | - | - | - | 112| - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
11 | - | - | - | 47 | 53 | 59 | - |{71}| - | 83 | 89 | 95 | - | - | - | - | 113| - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
12 | - | - | - | 48 | - | 60 | 66 | - | - | 84 | - | - | - | - | - | 108 | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
13 | - | - | - | 49 | - |{61}| 67 | - | - | 85 | - | - | - | - | - | 109 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
14 | - | - | 32 | 50 | - | 62 | 68 | - | - | 86 | - | - | - | - | - | 110 | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
15 | - | - | 33 | 51 | - | 63 | 69 | - | - | 87 | - | - | - | - | - | 111 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
16 | - | - | 34 | - | - | 64 | - | - | - | - | - | - | - | - | 106 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
17 | - | - | 35 | - | - | 65 | - | - | - | - | - | - | - | - | 107 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
18 | - |{30}| 36 | - | - | - | - | - | - | - | - | - | - |102 | - | - | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
1 | 2 | 3 | {4}| 5 | 6 | {7}| 8 | {9}| 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|--------------------------------------------------------- 19¨ -----------------------------|
|--------------------------------------- 13¨ ---------------|
|------------- 7¨ ------------|
|-------- 5¨ -------|
|--- 2¨ --|
Elemen dari 309 ini terdiri dari Δ300 dan Δ9 akan berlaku sebagai input pada proses berikutnya terhadap angka 10 dan 9 yaitu ke 300/10 dan 9/9 tepatnya di angka 30 ke 31.
Berdasarkan uraian tentang perpindahan layar yang diakibatkan oleh perubahan arah polaritas dari minor hexagon maka nilai vektor di tiap layar kita tambahkan Δ100.
Seluruh proses P(7):142857 sampai ke vektor di angka 31 ke 231 yang diuraikan di atas berada dalam lingkup flowchart yang dialokasikan dengan id: 57.
- 1155 / 5 = 286 - 55 = 200 + 31 = 231
layer| i | f
-----+-------+------
| 1,2:1 | (2,3)
1 +-------+
| 3:2 | (7)
-----+-------+------
| 4,6:3 | (10,11,12) <--- 231 (3x)
2 +-------+
|{7}:4 |({13})
-----+-------+------
| 8,9:5 | (14,{15}) <--- 231 (2x)
3 +-------+
| 10:6 | (19)
-----+-------+------
- 286 - (231x5)/(11x7) = 286 - 1155/77 = 286 - 15 = 200 + 71 = 271
- 114 - 19 = 19 x 5 = 95 = d(14)
| 1st (Form) | 2nd (Route) | 3rd (Channel) |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
1 |{19}| - | 31 | 37 | - | - | - | - | - | - | - | - | - | - | 103 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
2 |{20}| 26 | - | 38 | - | - | - | - | - | 74 | - | - | - | 98 | 104 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
3 | 21 | 27 | - | 39 | - | - | - | - | - | 75 | - | - | - | 99 | 105 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
4 | 22 | 28 | - | 40 | - | - | - | - | - | 76 | - | - | - |100 | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
5 | 23 | 29 | - | 41 | - | - | - | - | - | 77 | - | - | - |101 | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
6 | 24 | - | - | 42 | - | 54 | - | - | 72 | 78 | - | 90 | 96 | - | - | - | - | 114|
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
7 | 25 | - | - | 43 | - | 55 | - | - | 73 | 79 | - | 91 | 97 | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
8 | - | - | - | 44 | - | 56 | - | - | - | 80 | - | 92 | - | - | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
9 | - | - | - | 45 | - | 57 | - | - | - | 81 | - | 93 | - | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
10 | - | - | - | 46 | 52 | 58 | - | 70 | - | 82 | 88 | 94 | - | - | - | - | 112| - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
11 | - | - | - | 47 | 53 | 59 | - | 71 | - | 83 | 89 |{95}| - | - | - | - | 113| - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
12 | - | - | - | 48 | - | 60 | 66 | - | - | 84 | - | - | - | - | - | 108 | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
13 | - | - | - | 49 | - | 61 | 67 | - | - | 85 | - | - | - | - | - | 109 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
{14} | - | - | 32 | 50 | - | 62 | 68 | - | - | 86 | - | - | - | - | - | 110 | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
15 | - | - | 33 | 51 | - | 63 | 69 | - | - | 87 | - | - | - | - | - | 111 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
16 | - | - | 34 | - | - | 64 | - | - | - | - | - | - | - | - | 106 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
17 | - | - | 35 | - | - | 65 | - | - | - | - | - | - | - | - | 107 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
18 | - | 30 | 36 | - | - | - | - | - | - | - | - | - | - |102 | - | - | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
{19} | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |{12}|{13}| 14 | 15 | 16 | 17 | 18 | 19 |
|--------------------------------------------------------- 19¨ -----------------------------|
|--------------------------------------- 13¨ ---------------|
|------------- 7¨ ------------|
|-------- 5¨ -------|
|--- 2¨ --|
layer| i | f
-----+-------+------
| 1,2:1 | (2,3)
+-------+
| 3:2 | (7)
+-------+------
| 4,6:3 | (10,11,12)
1 +-------+
| 7:4 | (13)
+-------+------
| 8,9:5 | (14,15)
+-------+
| 10:6 | (19) <--- 195
-----+-------+------
| 7 | 1x ({20})
+-------+
2 | 8 |
+-------+
| 13:9 | 1x
-----+-------+------
| 10 |
+-------+
3 | 11 |
+-------+
| 19:12 | 1x
-----+-------+------
Permutation:
each index of 7,13,19 has only one faktor
- 73 » 7 x 3 = 21 = d(3)
| 1st (Form) | 2nd (Route) | 3rd (Channel) |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
1 |{19}| - | 31 | 37 | - | - | - | - | - | - | - | - | - | - | 103 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
2 |{20}| 26 | - | 38 | - | - | - | - | - | 74 | - | - | - | 98 | 104 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
3 |{21}| 27 | - | 39 | - | - | - | - | - | 75 | - | - | - | 99 | 105 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
4 |{22}| 28 | - | 40 | - | - | - | - | - | 76 | - | - | - |100 | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
5 |{23}| 29 | - | 41 | - | - | - | - | - | 77 | - | - | - |101 | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
6 |{24}| - | - | 42 | - | 54 | - | - | 72 | 78 | - | 90 | 96 | - | - | - | - | 114|
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
{7} |{25}| - | - | 43 | - | 55 | - | - |{73}| 79 | - | 91 | 97 | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
8 | - | - | - | 44 | - | 56 | - | - | - | 80 | - | 92 | - | - | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
9 | - | - | - | 45 | - | 57 | - | - | - | 81 | - | 93 | - | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
10 | - | - | - | 46 | 52 | 58 | - | 70 | - | 82 | 88 | 94 | - | - | - | - | 112| - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
11 | - | - | - | 47 | 53 | 59 | - | 71 | - | 83 | 89 | 95 | - | - | - | - | 113| - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
12 | - | - | - | 48 | - | 60 | 66 | - | - | 84 | - | - | - | - | - | 108 | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
13 | - | - | - | 49 | - | 61 | 67 | - | - | 85 | - | - | - | - | - | 109 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
14 | - | - | 32 | 50 | - | 62 | 68 | - | - | 86 | - | - | - | - | - | 110 | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
15 | - | - | 33 | 51 | - | 63 | 69 | - | - | 87 | - | - | - | - | - | 111 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
16 | - | - | 34 | - | - | 64 | - | - | - | - | - | - | - | - | 106 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
17 | - | - | 35 | - | - | 65 | - | - | - | - | - | - | - | - | 107 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
18 | - | 30 | 36 | - | - | - | - | - | - | - | - | - | - |102 | - | - | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
{1} | {2}| 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|--------------------------------------------------------- 19¨ -----------------------------|
|--------------------------------------- 13¨ ---------------|
|------------- 7¨ ------------|
|-------- 5¨ -------|
|-- 121 --|
layer| i | f
-----+-------+------
| 1,2:1 | (2,3)
+-------+
| 3:2 | (7) ------------7x------
+-------+------ |
| 4,6:3 | (10,11,12) --- |
1 +-------+ | |
| 7:4 | (13) | 5x -----
+-------+------ | |
| 8,9:5 | (14,15) ------ |
+-------+ |
| 10:6 | (19) |
-----+-------+------ |
| 11:7 | (20) <--- 14 |
+-------+ |
2 | 12:8 | ({26}) ------- |
+-------+ | |
| 13:9 | (27) | 2x -----
-----+-------+------ |
| 14:10 | (28) ---------
+-------+
3 | 11 |
+-------+
| 19:12 | 1x
-----+-------+------
Permutation:
5x + 2x = 7x
5^2 + 2^5 = 57
| 1st (Form) | 2nd (Route) | 3rd (Channel) |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
1 | 19 | - | 31 | 37 | - | - | - | - | - | - | - | - | - | - | 103 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
2 | 20 |{26}| - | 38 | - | - | - | - | - | 74 | - | - | - | 98 | 104 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
3 | 21 | 27 | - | 39 | - | - | - | - | - | 75 | - | - | - | 99 | 105 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
4 | 22 | 28 | - | 40 | - | - | - | - | - | 76 | - | - | - |100 | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
5 | 23 | 29 | - | 41 | - | - | - | - | - | 77 | - | - | - |101 | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
6 | 24 | - | - | 42 | - | 54 | - | - | 72 | 78 | - | 90 | 96 | - | - | - | - | 114|
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
7 | 25 | - | - | 43 | - | 55 | - | - | 73 | 79 | - | 91 | 97 | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
8 | - | - | - | 44 | - | 56 | - | - | - | 80 | - | 92 | - | - | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
9 | - | - | - | 45 | - | 57 | - | - | - | 81 | - | 93 | - | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
10 | - | - | - | 46 | 52 | 58 | - | 70 | - | 82 | 88 | 94 | - | - | - | - | 112| - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
11 | - | - | - | 47 | 53 | 59 | - | 71 | - | 83 | 89 | 95 | - | - | - | - | 113| - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
12 | - | - | - | 48 | - | 60 | 66 | - | - | 84 | - | - | - | - | - | 108 | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
13 | - | - | - | 49 | - | 61 | 67 | - | - | 85 | - | - | - | - | - |{109}| - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
14 | - | - | 32 | 50 | - | 62 | 68 | - | - | 86 | - | - | - | - | - | 110 | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
15 | - | - | 33 | 51 | - | 63 | 69 | - | - | 87 | - | - | - | - | - | 111 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
16 | - | - | 34 | - | - | 64 | - | - | - | - | - | - | - | - | 106 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
17 | - | - | 35 | - | - | 65 | - | - | - | - | - | - | - | - | 107 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
18 | - | 30 | 36 | - | - | - | - | - | - | - | - | - | - |102 | - | - | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|--------------------------------------------------------- 19¨ -----------------------------|
|--------------------------------------- 13¨ ---------------|
|------------- 7¨ ------------|
|-------- 5¨ -------|
|--- 2¨ --|
layer| i | f
-----+-------+------
| 1,2:1 | (2x3) ----------2x--
+-------+ |
| 3:2 | (7) |
+-------+------ |
| 4,6:3 | (10,11,12) --- |
1 +-------+ | |
| 7:4 | (13) | 5x |
+-------+------ | |
| 8,9:5 | (14,15) ------ |
+-------+ |
| 10:6 | (19) |
-----+-------+------ | 6x √
| 11:7 | (20) |
+-------+ |
2 | 12:8 | (26) --------- |
+-------+ | |
| 13:9 | ({27}) | 2x | <--- 109
-----+-------+------ | |
| 14:10 | (28) --------- |
+-------+ |
3 | 11 | (29,30,31,32) --4x--
+-------+
| 19:12 | (36)
-----+-------+------
| 1st (Form) | 2nd (Route) | 3rd (Channel) |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
1 | 19 | - | 31 | 37 | - | - | - | - | - | - | - | - | - | - | 103 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
2 | 20 | 26 | - | 38 | - | - | - | - | - | 74 | - | - | - | 98 | 104 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
3 | 21 |{27}| - | 39 | - | - | - | - | - | 75 | - | - | - | 99 | 105 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
4 | 22 | 28 | - | 40 | - | - | - | - | - | 76 | - | - | - |100 | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
5 | 23 | 29 | - | 41 | - | - | - | - | - | 77 | - | - | - |101 | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
6 | 24 | - | - | 42 | - | 54 | - | - | 72 | 78 | - | 90 | 96 | - | - | - | - | 114|
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
7 | 25 | - | - | 43 | - | 55 | - | - | 73 | 79 | - | 91 | 97 | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
8 | - | - | - | 44 | - | 56 | - | - | - | 80 | - | 92 | - | - | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
9 | - | - | - | 45 | - | 57 | - | - | - | 81 | - | 93 | - | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
10 | - | - | - | 46 | 52 | 58 | - | 70 | - | 82 | 88 | 94 | - | - | - | - | 112| - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
11 | - | - | - | 47 | 53 | 59 | - | 71 | - | 83 | 89 | 95 | - | - | - | - | 113| - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
12 | - | - | - | 48 | - | 60 | 66 | - | - | 84 | - | - | - | - | - | 108 | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
13 | - | - | - | 49 | - | 61 | 67 | - | - | 85 | - | - | - | - | - | 109 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
14 | - | - | 32 | 50 | - | 62 | 68 | - | - | 86 | - | - | - | - | - | 110 | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
15 | - | - | 33 | 51 | - | 63 |{69}| - | - | 87 | - | - | - | - | - | 111 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
16 | - | - | 34 | - | - | 64 | - | - | - | - | - | - | - | - | 106 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
17 | - | - | 35 | - | - | 65 | - | - | - | - | - | - | - | - | 107 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
18 | - | 30 | 36 | - | - | - | - | - | - | - | - | - | - |102 | - | - | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
1 | 2 | {3}| 4 | 5 | 6 | 7 | {8}| 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|--------------------------------------------------------- 19¨ -----------------------------|
|--------------------------------------- 13¨ ---------------|
|------------- 7¨ ------------|
|-------- 5¨ -------|
|--- 2¨ --|
layer| i | f
-----+-------+------
| 1,2:1 | (2x3) ----------2x--
+-------+ |
| 3:2 | (7) |
+-------+------ |
| 4,6:3 | (10,11,12) --- |
1 +-------+ | |
| 7:4 | (13) | 5x |
+-------+------ | |
| 8,9:5 | (14,15) ------ |
+-------+ |
| 10:6 | (19) |
-----+-------+------ | 6x √
| 11:7 | (20) |
+-------+ |
2 | 12:8 | (26) --------- |
+-------+ | |
| 13:9 | (27) <-- 69 | 2x |
-----+-------+------ | |
| 14:10 | ({28}) ------- |
+-------+ |
3 | 11 | (29,30,31,32) --4x--
+-------+
| 19:12 | (36)
-----+-------+------
| 1st (Form) | 2nd (Route) | 3rd (Channel) |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
1 | 19 | - | 31 | 37 | - | - | - | - | - | - | - | - | - | - | 103 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
2 | 20 | 26 | - | 38 | - | - | - | - | - | 74 | - | - | - | 98 | 104 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
3 | 21 | 27 | - | 39 | - | - | - | - | - | 75 | - | - | - | 99 | 105 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
4 | 22 |{28}| - | 40 | - | - | - | - | - | 76 | - | - | - |100 | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
5 | 23 | 29 | - | 41 | - | - | - | - | - | 77 | - | - | - |101 | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
6 | 24 | - | - | 42 | - | 54 | - | - | 72 | 78 | - | 90 | 96 | - | - | - | - | 114|
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
7 | 25 | - | - | 43 | - | 55 | - | - | 73 | 79 | - | 91 | 97 | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
8 | - | - | - | 44 | - | 56 | - | - | - | 80 | - | 92 | - | - | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
9 | - | - | - | 45 | - | 57 | - | - | - | 81 | - | 93 | - | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
10 | - | - | - | 46 | 52 | 58 | - | 70 | - | 82 | 88 | 94 | - | - | - | - | 112| - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
11 | - | - | - | 47 | 53 | 59 | - | 71 | - | 83 | 89 | 95 | - | - | - | - | 113| - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
12 | - | - | - | 48 | - | 60 | 66 | - | - | 84 | - | - | - | - | - | 108 | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
13 | - | - | - | 49 | - | 61 | 67 | - | - | 85 | - | - | - | - | - |{109}| - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
14 | - | - | 32 | 50 | - | 62 | 68 | - | - | 86 | - | - | - | - | - | 110 | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
15 | - | - | 33 | 51 | - | 63 | 69 | - | - | 87 | - | - | - | - | - | 111 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
16 | - | - | 34 | - | - | 64 | - | - | - | - | - | - | - | - | 106 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
17 | - | - | 35 | - | - | 65 | - | - | - | - | - | - | - | - | 107 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
18 | - | 30 | 36 | - | - | - | - | - | - | - | - | - | - |102 | - | - | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|--------------------------------------------------------- 19¨ -----------------------------|
|--------------------------------------- 13¨ ---------------|
|------------- 7¨ ------------|
|-------- 5¨ -------|
|--- 2¨ --|
layer| i | f
-----+-------+------
| 1,2:1 | (2x3) ----------2x--
+-------+ |
| 3:2 | (7) |
+-------+------ |
| 4,6:3 | (10,11,12) --- |
1 +-------+ | |
| 7:4 | (13) | 5x |
+-------+------ | |
| 8,9:5 | (14,15) ------ |
+-------+ |
| 10:6 | (19) |
-----+-------+------ | 6x √
| 11:7 | (20) |
+-------+ |
2 | 12:8 | (26) --------- |
+-------+ | |
| 13:9 | (27) <-- 69 | 2x |
-----+-------+------ | |
| 14:10 | (28) --------- |
+-------+ |
3 | 11 | ({29,30,31,32}) -4x-
+-------+
| 19:12 | (36)
-----+-------+------
| 1st (Form) | 2nd (Route) | 3rd (Channel) |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
1 | 19 | - |{31}| 37 | - | - | - | - | - | - | - | - | - | - | 103 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
2 | 20 | 26 | - | 38 | - | - | - | - | - | 74 | - | - | - | 98 | 104 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
3 | 21 | 27 | - | 39 | - | - | - | - | - | 75 | - | - | - | 99 | 105 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
4 | 22 | 28 | - | 40 | - | - | - | - | - | 76 | - | - | - |100 | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
5 | 23 |{29}| - | 41 | - | - | - | - | - | 77 | - | - | - |101 | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
6 | 24 | - | - | 42 | - | 54 | - | - | 72 | 78 | - | 90 | 96 | - | - | - | - | 114|
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
7 | 25 | - | - | 43 | - | 55 | - | - | 73 | 79 | - | 91 | 97 | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
8 | - | - | - | 44 | - | 56 | - | - | - | 80 | - | 92 | - | - | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
9 | - | - | - | 45 | - | 57 | - | - | - | 81 | - | 93 | - | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
10 | - | - | - | 46 | 52 | 58 | - |{70}| - | 82 | 88 | 94 | - | - | - | - | 112| - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
11 | - | - | - | 47 | 53 | 59 | - |{71}| - | 83 | 89 | 95 | - | - | - | - | 113| - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
12 | - | - | - | 48 | - | 60 | 66 | - | - | 84 | - | - | - | - | - | 108 | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
13 | - | - | - | 49 | - | 61 | 67 | - | - | 85 | - | - | - | - | - | 109 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
14 | - | - |{32}| 50 | - | 62 | 68 | - | - | 86 | - | - | - | - | - | 110 | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
15 | - | - | 33 | 51 | - | 63 | 69 | - | - | 87 | - | - | - | - | - | 111 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
16 | - | - | 34 | - | - | 64 | - | - | - | - | - | - | - | - | 106 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
17 | - | - | 35 | - | - | 65 | - | - | - | - | - | - | - | - | 107 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
18 | - |{30}|{36}| - | - | - | - | - | - | - | - | - | - |102 | - | - | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|--------------------------------------------------------- 19¨ -----------------------------|
|--------------------------------------- 13¨ ---------------|
|------------- 7¨ ------------|
|-------- 5¨ -------|
|--- 2¨ --|
layer| i | f
-----+-------+------
| 1,2:1 | (2x3) ----------2x--
+-------+ |
| 3:2 | (7) |
+-------+------ |
| 4,6:3 | (10,11,12) --- |
1 +-------+ | |
| 7:4 | (13) | 5x |
+-------+------ | |
| 8,9:5 | (14,15) ------ |
+-------+ |
| 10:6 | (19) |
-----+-------+------ | 6x √
| 11:7 | (20) |
+-------+ |
2 | 12:8 | (26) --------- |
+-------+ | |
| 13:9 | (27) <-- 69 | 2x |
-----+-------+------ | |
| 14:10 | (28) --------- |
+-------+ |
3 | 11 | (29,30,31,32) --4x--
+-------+
| 19:12 | ({36})
-----+-------+------
| 1st (Form) | 2nd (Route) | 3rd (Channel) |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
1 | 19 | - |{31}| 37 | - | - | - | - | - | - | - | - | - | - | 103 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
2 | 20 | 26 | - | 38 | - | - | - | - | - | 74 | - | - | - | 98 | 104 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
3 | 21 | 27 | - | 39 | - | - | - | - | - | 75 | - | - | - | 99 | 105 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
4 | 22 | 28 | - | 40 | - | - | - | - | - | 76 | - | - | - |100 | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
5 | 23 |{29}| - | 41 | - | - | - | - | - | 77 | - | - | - |101 | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
6 | 24 | - | - | 42 | - | 54 | - | - | 72 | 78 | - | 90 | 96 | - | - | - | - | 114|
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
7 | 25 | - | - | 43 | - | 55 | - | - | 73 | 79 | - | 91 | 97 | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
8 | - | - | - | 44 | - | 56 | - | - | - | 80 | - | 92 | - | - | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
9 | - | - | - | 45 | - | 57 | - | - | - | 81 | - | 93 | - | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
10 | - | - | - | 46 | 52 | 58 | - |{70}| - | 82 | 88 | 94 | - | - | - | - | 112| - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
11 | - | - | - | 47 | 53 | 59 | - |{71}| - | 83 | 89 | 95 | - | - | - | - | 113| - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
12 | - | - | - | 48 | - | 60 | 66 | - | - | 84 | - | - | - | - | - | 108 | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
13 | - | - | - | 49 | - | 61 | 67 | - | - | 85 | - | - | - | - | - | 109 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
14 | - | - |{32}| 50 | - | 62 | 68 | - | - | 86 | - | - | - | - | - | 110 | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
15 | - | - | 33 | 51 | - | 63 | 69 | - | - | 87 | - | - | - | - | - | 111 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
16 | - | - | 34 | - | - | 64 | - | - | - | - | - | - | - | - | 106 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
17 | - | - | 35 | - | - | 65 | - | - | - | - | - | - | - | - | 107 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
18 | - |{30}|{36}| - | - | - | - | - | - | - | - | - | - |102 | - | - | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|--------------------------------------------------------- 19¨ -----------------------------|
|--------------------------------------- 13¨ ---------------|
|------------- 7¨ ------------|
|-------- 5¨ -------|
|--- 2¨ --|
True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+----------+------
| 1,2:1 | (2,3) -------------- -------------
+----------+ |
| 3:2 | (7) |
+----------+------ |
| 4,6:3 | (10,11,12) --- |
1 +----------+ | |
| 7:4 | (13) | 5® | 5' and 3' = 8'
+----------+------ | |
| 8,9:{5}| (14,15) ------ |
+----------+ |
| {10}:6| (19) |
-----+----------+------ | 6® ------------- } 2 x 8' = 28Δ
| 11:7 | (20) |
+----------+ |
| 12:8 | (26) --------- |
+----------+ | |
| 13:9 | (27) | 2® | 3' and 5' = 8'
2 +----------+------ | |
| 14:10 | (28) -------- |
+----------+ |
| 15,18:11 | (29,30,31,32) ------
+----------+
| 19:12 | (36) 28Δ
-----+----------+---------------- | ------ <-------
| 20:13 | (38) = 3 & 8 = 2 & 8' + 1 & 8'
+----------+ |
| 21,22:14 | (40,41) ------------ |
+----------+ | |
| 23:15 | (42) | 6® 8'= 3' and 5'
3 +----------+ |
| 24,27:16 | (43,44,45,46) ------
+----------+
| 28:17 | ({50}) √
+----------+
| 29:18 | 1x
-----+----------+------
| 1st (Form) | 2nd (Route) | 3rd (Channel) |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
1 | 19 | - | 31 | 37 | - | - | - | - | - | - | - | - | - | - | 103 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
2 | 20 | 26 | - | 38 | - | - | - | - | - | 74 | - | - | - | 98 | 104 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
3 | 21 | 27 | - | 39 | - | - | - | - | - | 75 | - | - | - | 99 | 105 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
4 | 22 | 28 | - | 40 | - | - | - | - | - | 76 | - | - | - |{100} - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
5 | 23 | 29 | - | 41 | - | - | - | - | - | 77 | - | - | - |101 | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
6 | 24 | - | - | 42 | - | 54 | - | - | 72 | 78 | - | 90 | 96 | - | - | - | - | 114|
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
7 | 25 | - | - | 43 | - | 55 | - | - |{73}| 79 | - | 91 | 97 | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
8 | - | - | - | 44 | - | 56 | - | - | - | 80 | - | 92 | - | - | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
9 | - | - | - | 45 | - | 57 | - | - | - | 81 | - | 93 | - | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
10 | - | - | - | 46 | 52 | 58 | - | 70 | - | 82 | 88 | 94 | - | - | - | - | 112| - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
11 | - | - | - | 47 | 53 | 59 | - | 71 | - | 83 | 89 | 95 | - | - | - | - | 113| - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
12 | - | - | - | 48 | - | 60 | 66 | - | - | 84 | - | - | - | - | - | 108 | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
13 | - | - | - | 49 | - | 61 | 67 | - | - | 85 | - | - | - | - | - | 109 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
14 | - | - | 32 |{50}| - | 62 | 68 | - | - | 86 | - | - | - | - | - | 110 | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
15 | - | - | 33 | 51 | - | 63 | 69 | - | - | 87 | - | - | - | - | - | 111 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
16 | - | - | 34 | - | - | 64 | - | - | - | - | - | - | - | - | 106 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
17 | - | - | 35 | - | - | 65 | - | - | - | - | - | - | - | - | 107 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
18 | - | 30 | 36 | - | - | - | - | - | - | - | - | - | - |102 | - | - | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|--------------------------------------------------------- 19¨ -----------------------------|
|--------------------------------------- 13¨ ---------------|
|------------- 7¨ ------------|
|-------- 5¨ -------|
|--- 2¨ --|
True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+----------+------
| 1,2:1 | (2,3) -------------- -------------
+----------+ |
| 3:2 | (7) |
+----------+------ |
| 4,6:3 | (10,11,12) --- |
1 +----------+ | |
| 7:4 | (13) | 5® | 5' and 3' = 8'
+----------+------ | |
| {8},9:{5}| (14,15) ------ |
+----------+ |
| {10}:{6}| (19) |
-----+----------+------ | 6® ------------- } 2 x 8' = 28Δ
| 11:7 | (20) |
+----------+ |
| 12:8 | (26) --------- |
+----------+ | |
| 13:9 | (27) | 2® | 3' and 5' = 8'
2 +----------+------ | |
| 14:10 | (28) -------- |
+----------+ |
| 15,18:11 | (29,30,31,32) ------
+----------+
| 19:12 | (36) 28Δ
-----+----------+---------------- | ------ <-------
| 20:13 | (38) = 3 & 8 = 2 & 8' + 1 & 8'
+----------+ |
| 21,22:14 | (40,41) ------------ |
+----------+ | |
| 23:15 | (42) | 6® 8'= 3' and 5'
3 +----------+ |
| 24,27:16 | (43,44,45,46) ------
+----------+
| 28:{17}| {2x50} (50) √
+----------+
| {29}:18 | {50} (68) √
{168}+----------+------ <-------
Permutation:
36 = 2² x 3² = 6 x 6
Perhatikan bahwa angka tujuh (7), tigabelas (13), dan sembilanbelas (19) ketiganya mempunyai karakter yang berdiri sendiri.
Maka berdasarkan selisih angka 25 ke 29 kita ambil susunan dari 25 repository dengan empat (4) sisanya yaitu 26 ke 29 dimana kita akan dapatkan susunan vektor (6,12,18) dari True Prime Pairs.
- 53 + 71 + 68 = 53 + 139 = 192 = d(2)
| 1st (Form) | 2nd (Route) | 3rd (Channel) |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
1 | 19 | - | 31 | 37 | - | - | - | - | - | - | - | - | - | - | 103 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
2 | 20 | 26 | - | 38 | - | - | - | - | - | 74 | - | - | - | 98 | 104 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
3 | 21 | 27 | - | 39 | - | - | - | - | - | 75 | - | - | - | 99 | 105 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
4 | 22 | 28 | - | 40 | - | - | - | - | - | 76 | - | - | - |100 | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
5 | 23 | 29 | - | 41 | - | - | - | - | - | 77 | - | - | - |101 | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
{6} | 24 | - | - | 42 | - | 54 | - | - | 72 | 78 | - | 90 | 96 | - | - | - | - | 114|
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
7 | 25 | - | - | 43 | - | 55 | - | - | 73 | 79 | - | 91 | 97 | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
8 | - | - | - | 44 | - | 56 | - | - | - | 80 | - | 92 | - | - | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
9 | - | - | - | 45 | - | 57 | - | - | - | 81 | - | 93 | - | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
10 | - | - | - | 46 | 52 | 58 | - | 70 | - | 82 | 88 | 94 | - | - | - | - | 112| - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
11 | - | - | - | 47 |{53}| 59 | - |{71}| - | 83 | 89 | 95 | - | - | - | - | 113| - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
{12} | - | - | - | 48 | - | 60 | 66 | - | - | 84 | - | - | - | - | - | 108 | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
13 | - | - | - | 49 | - | 61 | 67 | - | - | 85 | - | - | - | - | - | 109 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
14 | - | - | 32 | 50 | - | 62 |{68}| - | - | 86 | - | - | - | - | - | 110 | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
15 | - | - | 33 | 51 | - | 63 | 69 | - | - | 87 | - | - | - | - | - | 111 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
16 | - | - | 34 | - | - | 64 | - | - | - | - | - | - | - | - | 106 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
17 | - | - | 35 | - | - | 65 | - | - | - | - | - | - | - | - | 107 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
{18} | - | 30 | 36 | - | - | - | - | - | - | - | - | - | - |102 | - | - | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|--------------------------------------------------------- 19¨ -----------------------------|
|--------------------------------------- 13¨ ---------------|
|------------- 7¨ ------------|
|-------- 5¨ -------|
|--- 2¨ --|
id: 18
---+-----+-----
1 | 1 | 5 ----
---+-----+----- |
2 | 6 | 8 |
---+-----+----- | 2nd
3 | 9 | 26 |
---+-----+----- |
4 | 27 | 28 --3-¤
---+-----+----- | 3rd
5 | 29 | 31 ----
---+-----+-----
6 | 32 | 32 ----
---+-----+----- |
7 | 33 | 44 |
---+-----+----- | 4th
8 | 45 | 46 |
---+-----+----- |
9 | 47 | 49 --6-¤
---+-----+----- | 5th
10 | 50 | 50 ----
---+-----+-----
11 | 51 | 53 ----
---+-----+----- |
12 | 54 | 59 |
---+-----+----- | 6th
13 | 60 | 82 |
---+-----+----- |
14 | 83 |{102} -{9}¤
---+-----+----- | 7th
15 |{103}| 110 ----
---+-----+-----
id: 26
---+-----+-----+-----+-----+
1 | 5 | 1 | 6 | 7 |----------------------------
---+-----+-----+-----+-----+ |
2 | 2 | 7 | 9 | 16 |---------------------- |
---+-----+-----+-----+-----+ | |
3 | 58 | 10 | 68 | 78 |---------------- | |
---+-----+-----+-----+-----+ | | |
4 | 35 | 69 | 104 | 173 |---------- | | |
---+-----+-----+-----+-----+ | | | |
5 | {17}| 105 | 122 |{227}| | | | |
---+-----+-----+-----+-----+- Cross {17}Δ26|43Δ30|13Δ17|30
6 | {17}|{123}| 140 | 263 | | | | |
---+-----+-----+-----+-----+ | | | |
7 | 18 | 141 | 159 | 300 |---------- | | |
---+-----+-----+-----+-----+ | | |
8 | 15 | 160 | 175 | 335 |---------------- | |
---+-----+-----+-----+-----+ | |
9 | 15 | 176 | 191 | 367 |---------------------- |
---+-----+-----+-----+-----+ |
10 | 35 |{192}|{227}| 419 |----------------------------
---+-----+-----+-----+-----+
True Prime Pairs:
(5,7), (11,13), (17,19)
|------------------------- Skema-12 ------------------------|
|------------ 6¤ -------------|------------- 6¤ ------------|
|--------------------------- 192 ---------------------------|
|---- {23} ----|---- {49} ----|-- {29} -|--{30} --|-- 61 ---|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 |{13}| 17 | 19 | 17 |{12}| 11 | 19 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|--------- 5¤ ---------|---- {48} ----|----- {48} ---|{43}|
|--------- 5¤ ---------|------------ {96} -----------|{43}|
|--------- {53} ---------|-------------- {139} -------------|
|------- Skema-23 -------|------------- Skema-34 -----------|
Dengan skema ini maka angka 17 akan bertransformasi ke Skema-23 via 42 ke 43 yang posisi vektornya berada tepat berada di indek ke-23.
True Prime Vektors ζ(s):
(2,3), (29,89), (36,68), (72,42), (100,50), (2,3), (29,89), ...infinity
----------------------+-----+-----+-----+ ---
7 --------- 1,2:1| 1 | 30 | 40 | 71 (2,3) ‹-------------@---- |
| +-----+-----+-----+-----+ | |
| 8 ‹------ 3:2| 1 | 30 | 40 | 90 | 161 (7) ‹--- | 5¨
| | +-----+-----+-----+-----+ | | |
| | 6 ‹-- 4,6:3| 1 | 30 | 200 | 231 (10,11,12) ‹--|--- | |
| | | +-----+-----+-----+-----+ | | | ---
--|--|-----» 7:4| 1 | 30 | 40 | 200 | 271 (13) --› | {5®} | |
| | +-----+-----+-----+-----+ | | |
--|---› 8,9:5| 1 | 30 | 200 | 231 (14,15) ---------› | 7¨
289 | +-----+-----+-----+-----+-----+ | |
| ----› 10:6| 20 | 5 | 10 | 70 | 90 | 195 (19) --› Φ | 6® |
--------------------+-----+-----+-----+-----+-----+ | ---
67 --------› 11:7| 9 | 5 | 14 (20) --------› ¤ | |
| +-----+-----+-----+ | |
| 78 ‹----- 12:8| 9 | 60 | 40 | 109 (26) «------------ | 11¨
| | +-----+-----+-----+ | | |
| | 86‹--- 13:9| 9 | 60 | 69 (27) «--- Δ (Rep Fork) | 2® | |
| | | +-----+-----+-----+ | | ---
| | ---› 14:10| 9 | 60 | 40 | 109 (28) ------------ | |
| | +-----+-----+-----+ | |
| ---› 15,18:11| 1 | 30 | 40 | 71 (29,30,31,32) ------------ 13¨
329 | +-----+-----+-----+ |
| ‹--------- 19:12| 10 | 60 | 70 (36) ‹--------------------- Φ |
-------------------+-----+-----+ ---
786 ‹------- 20:13| 90 | 90 (38) ‹-------------- ¤ |
| +-----+-----+ |
| 618 ‹- 21,22:14| 8 | 40 | 48 (40,41) ‹---------------------- {17¨}
| | +-----+-----+-----+-----+-----+ | |
| | 594 ‹{23}:15| 8 | 40 | 70 | 60 | 100 | 278 ({42}) «-- |{6'®} |
| | | +-----+-----+-----+-----+-----+ | | ---
--|--|-»24,27:16| 8 | 40 | 48 (43,44,45,46) ------------|---- |
| | +-----+-----+ | |
--|---› 28:17| 100 | 100 (50) --------------------------» 19¨
{168} | +-----+ |
| 102 -› 29:18| 50 | 50(68) ---------> Δ |
----------------------+-----+ ---
Berikut dengan Bagan Flowchart dan Sequence jumlah diagram yang digunakan untuk visualisasi jumlahnya akan ada enam (6) yang dialokasikan di id 57 sd 62 yang berujung di 63 ke 369.
id: 6
---+-----+-----+-----+-----+
1 | 72 | 1 | 73 | 74 |----------------- 57. Flowchart <-- 7(111)
---+-----+-----+-----+-----+ | v |
2 | 20 | 74 | 94 | 168 |----------- | 157 >> 58. Sequence <--- 8(111)
---+-----+-----+-----+-----+ | 1 | v |
3 | 18 | 95 | 113}| 208 |----- | | 59 Grammar <---- 9(111)
---+-----+-----+-----+-----+ | 5 | | v |
4 | 7 | 114 | 121 | 235 |- 7 | | | 60 Channel<--6x10-->Δ
---+-----+-----+-----+-----+ | | | v |
5 | 13 | 122 | 135 | 257 |----- | | 61 >> 61. Route - Φ(61)-->{16}
---+-----+-----+-----+-----+ | | v |
6 | 19 | 136 | 155 | 291 |----------- | 62. Tree -- Φ(62)-->{26}
---+-----+-----+-----+-----+ | v |
7 | 9 | 156 | 165 | 321 |---------------- {63} Out --- Φ(63)-->{369}
---+-----+-----+-----+-----+
Sampai disini kita sudah bahas format visualisasi dari 10 ke 29. Urutannya mulai dari Flowchart adalah formasi (10,29,139,286,786,1729,10143). Berikut saya uraikan secara garis besarnya.
Berdasarkan pemilahan objek secara homogen terhadap 114 repository ini kita akan dapatkan angka 57 yang terdisribusi atas pasangan angka (28,29) seperti berikut ini:
- (114/2)! = 57! = 1653 » 1653 / 57 = 29
--------+
| ⅓
+--- } ⅔
Case A | ⅓
+---------
| ⅓ |
-----------------+ Φ = ⅔
| ⅓ |
+---------
Case B | ⅓
+--- } ⅔
| ⅓
---------
Ujung angka ini ada di 2, 8 dan 5, 7, kita gabung jadi 28 dan 57 yang selisihnya adalah 29. Itulah mengapa semua proses di Sistem DNA itu mau ke kiri, ke kanan, ke atas, ke bawah, ke luar, ke dalam, whatever, semuanya akan terjadi pengulangan di angka duapuluh sembilan (29) ini.
- 9 + 19 + 29 = 28 + 29 = 57
P7:(142857)
# | A | B | ∑
------+------+------+-----
{1} | | |
------+ | |
... | 28 | 29 | 57
------+ | |
{57} | | |
------+------+------+-----
58 | | |
------+ | |
... | 29 | 28 | 57
------+ | |
114 | | |
------+------+------+-----
| 57 | 57 | 114
Dan ini juga sebabnya kenapa DNA itu bentuknya torus berpilin dan muter² dalam lingkup tiga (3) arah secara tiga (3) dimensi (3x3=9) yang secara keseluruhannya menyerupai bentuk trifoil..
Akar digital dari angka duapuluhdelapan (28) adalah angka satu (1). Jadi hampir mirip dengan angka batas sembilanbelas (19).
Twenty-eight is the only known number which can be expressed as a sum of the first non negative integers (1 + 2 + 3 + 4 + 5 + 6 + 7), a sum of the first primes (2 + 3 + 5 + 7 + 11) and a sum of the first non primes (1 + 4 + 6 + 8 + 9) and there is probably no other number with this property.
Angka duapuluh delapan (28) berperan pada konfigurasi (6®,6®) di angka 111+11+1=123 dimana 111 dan 123 merupakan objek dari angka sebelas (11) dan duabelas (12).
11=12+112+1112 = 1+2+8 and the only known values of n for which (p(n)^p(n)-1)/(p(n)-1) is prime are n=1,2,8, and 11.
Disini korelasi dari formasi-285 dan formasi-114 dengan angka empat (4) dan tujuh (7) sebagai faktor angka duapuluhdelapan (28).
Description
===========
Getting result within a huge package (5 to 19) by spreading (11)
the untouched objects (7) and tunneling (13) them in to a definite scheme (17).
Compositions
============
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 63 - 64
| 102 | 1 | - | - | - | - | - | 11 | 114 5¨ » Buka Toko
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 64 - 65
| - | - | 200 | - | - | - | - | {47}| 247 7¨ » Stok Barang
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 65 - 66
| - | - | - | 40 | 1 | - | - | 98 | 139 11¨ » Merchant Centre
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 66 - 69
| - | - | - | - | - | 200 | - | 86 | 286 13¨ » Peluang Terbaik
+-----+-----+-----+-----+-----+-----+-----+-----+ ---- 67 - 68
| - | - | - | - | - | - | 50 | 107 | 157 17¨ » Portfolio
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 68 - 71
| 66 | 30 | 8 | 50 | 30 | 8 | - | 594 | 786 19¨ » Network
+-----+-----+-----+-----+-----+-----+-----+-----+ ---------------
168 | 31 208 {90}| 31 208 50 | 943 | 1729 17 - 29
Δ
77|78
Formasi ini kita urut berdasarkan jumlah faktor. Misal angka pertama yaitu 71 adalah 3 faktor, yg kedua yaitu 161 adalah 4 faktor dst maka kita akan dapatkan 14 kelompok berikut ini:
- Φ(11,13) = (114 - 10²) + 13 = 27
1729 = 7 x 13 x 19
1729 / 7 = 13 x 19 = 247
1729 = 7 x 13 x 19
7 + 13 = 20 = d(2)
└── 2 x 19 = 38
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
| {1}| 2 | 3 | 4 | 5 | {6}| {7}| 8 | 9 | 10 | 11 | 12 | 13 | 14 |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
| {3}| {4}| 3 | 4 | 5 | 2 | 3 | 2 | 2 | 1 | 2 | 5 | 1 | 1 |{38}
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+---- } 285
| 3 | 8 | 9 | 16 | 25 |{12}|{21}| 16 | 18 | 10 | 22 | 60 |{13}|{14}|{247}
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
|-- 38 ---| |-- 33 ---| |-- {27}--|
Dari susunan ini kita dapatkan jumlah seluruh vektor dengan urutannya di angka 247 dimana via angka satu (1) menjadikan 10 terkoneksi dengan 13 dan 14 ke angka duapuluh tujuh (27).
14=2*7->2147=19*113->192147113=857*224209. Note that each new semiprime begins and ends with the ordered factors of the previous one. Can you find a larger chain? See for 139.
Pada skema alamiah korelasi antara angka 50 ke 27 ini adalah bahwasanya ragam genetika pada kromosom Y berkisar di angka 50 namun hanya 27 yang betul² merupakan bagian yang spesifik:
The X bears about 1,600 genes with varied functions. But the Y has hardly any genes; maybe 50, and only 27 of these are in the male-specific part of the Y. Many are present in multiple copies, most of them inactive, lying in giant loops of DNA. Most of the Y is made of repetitive “junk DNA”. Thus the human Y shows all the signs of a degraded chromosome near the end of its life.(The Conversation)
- 139 (output) = 77 (objek) = 50
Dari angka 27 ini maka kita dapat mulai lakukan proses dengan mengambil vektor awal yaitu di angka 69 sebagai jumlah objek dari angka duapuluh sembilan (29).
Konsep yang akan kita lakukan untuk merealisasikan skema yang sudah diuraikan di atas adalah skema ProofReading. Pada Sistem DNA Rekombinasi berkaitan dengan Replikasi Genetik.
Skema ini dilakukan via formasi 1729. Ini dimulai dari komposisi angka dua (2) yang melibatkan semua angka² yang tidak masuk tabulasi vektor. Detilnya diulas di Publishing
id: 2
---+-----+-----+-----+-----+
1 | 19 | 1 | 20 | 21 |-----------------------
---+-----+-----+-----+-----+ |
2 | 18 | 21 | 39 | 60 |----------------- |
---+-----+-----+-----+-----+ | |
3 |{63} | 40 | 103 | 143 |----------- | |
---+-----+-----+-----+-----+ | | |
4 | 37 | 104 | 141 | 245 |----- | | |
---+-----+-----+-----+-----+ | | | |
5 | 10 | 142 | 152 | 294 |- 10 | 13 | 12 | 12 | 18
---+-----+-----+-----+-----+ | | | |
6 | 24 | 153 | 177 | 332 |----- | | |
---+-----+-----+-----+-----+ | | |
7 | 75 | 178 | 253 | 431 |----------- | |
---+-----+-----+-----+-----+ | |
8 | 30 | 254 | 284 | 538 |----------------- |
---+-----+-----+-----+-----+ |
9 | 1 | 285 | 286 | 571 |-----------------------
===+=====+=====+=====+=====+
45 | 277 |
---+-----+
Permutation:
143 x 2 = 286
143 = d(8), 286 = d(7)
10 + 13 + 12 + 12 + 18 = 65 = d(11) = d(2)
Polaritas angka enam (6) ada di angka prima ke-18 yaitu enampuluh satu (61). Karena itu pola ini ditrigger oleh angka dua (2) sebagai prima terkecil yang memunculkan polaritas 18.
id: 26
---+-----+-----+-----+-----+
1 | {5}| 1 | 6 | 7 |----------------------------
---+-----+-----+-----+-----+ |
2 | {2}| 7 | 9 | 16 |---------------------- |
---+-----+-----+-----+-----+ | |
3 | {58}| 10 | 68 | 78 |---------------- | |
---+-----+-----+-----+-----+ | | |
4 | 35 | {69}| 104 | 173 |---------- | | |
---+-----+-----+-----+-----+ | | | |
5 | 17 | 105 |{122}| 227 | | | | |
---+-----+-----+-----+-----+- Cross 17 Δ26|43Δ30|13Δ17|30
6 | 17 |{123}| 140 | 263 | | | | |
---+-----+-----+-----+-----+ | | | |
7 | {18}| 141 | 159 | 300 |---------- | | |
---+-----+-----+-----+-----+ | | |
8 | {15}| 160 | 175 | 335 |---------------- | |
---+-----+-----+-----+-----+ | |
9 | {15}| 176 | 191 | 367 |---------------------- |
---+-----+-----+-----+-----+ |
10 | 35 |{192}| 227 | 419 |----------------------------
---+-----+-----+-----+-----+
Jika implementasi id: 57 dari flowchart kita melakukan transcript simbol kedalam angka² maka di 157 ini berlaku kebalikannya yaitu translasi angka yang ada pada text ke bentuk simbol.
- 61 = 18th prime
id: 6
---+-----+-----+-----+-----+
1 | 72 | 1 |{73} | 74 |----------------- 57. Flowchart <-- 7(111)
---+-----+-----+-----+-----+ | v |
2 | 20 |{74} | 94 |{168}|----------- |{157} >>{58} Sequence <--- 8(111)
---+-----+-----+-----+-----+ | {1} | v |
3 | 18 | 95 | 113 | 208 |----- | | 59. Grammar <---- 9(111)
---+-----+-----+-----+-----+ | {5} | | v |
4 | 7 |{114}| 121 | 235 |-{7} | | | 60. Channel<--6x10-->Δ
---+-----+-----+-----+-----+ | | | v |
5 | 13 | 122 | 135 | 257 |----- | |{61} >> 61. Route - Φ(61)-->{16}
---+-----+-----+-----+-----+ | | v |
6 | 19 | 136 | 155 | 291 |----------- | 62. Tree -- Φ(62)-->{26}
---+-----+-----+-----+-----+ | v |
7 | 9 |{156}|{165}| 321 |---------------- 63. Out --- Φ(63)-->{369}
---+-----+-----+-----+-----+
Pada projek ini kita gunakan Bagan Sequence untuk mewakili tujuh (7) alur proses (1) 1 ke 2, (2) 2 ke 3, (3) 3 ke 4, (4) 4 ke 5, (5) 5 ke 6, (6) 6 ke 3 dan (7) 6 ke 1 seperti berikut ini:
Diagram ini merupakan perangkat yang dapat digunakan untuk menterjemahkan angka² kedalam bentuk dan warna. Padanya kita alokasikan 157 ke 1+57 atau id: 58 sebagai kelanjutan id: 57.
Seperti yang Anda lihat formasi dari 69 objek dari angka 29 berujung matriks 6 x 9 secara sentral di angka 25 sehingga alokasi vektor seluruhnya dalam kondisi siap pada posisinya.
17: Package
27: Bagan
51: Attribute 15
52: Artifacts 25
53: Method 35
54: Model 45
55: Trace 55
56: Track 65 -----
28: Diagram Δ |
57: Flowchart 75 |
58: Sequence 85 |
{59}:Grammar 95 |
60: Channel >> 6x10 >> 06 |
61: Route 16 |
62: Tree 26 |
29: Mapping Δ |
63: Sizing 36-- 9 --¤
64: Sorting 46 |
65: Listener 56 -----
66: Looping 66
67: Capturing 76
68: Directions >> Δ22 >> 86 >> Δ4 + Δ18
Sesuai dengan karakternya sebagai diagram syntax maka berdasarkan Konsep Abstraction terpilih diagram yang digunakan untuk visualisasi abstrak dari Pola Kerja sebagai warisan dari Diagram Sequence dengan menggunakan pustaka javascript: Lexer dan Parser.
Diagram ini akan kita alokasikan dengan id: 59 yang akan berfungsi dalam mengungkap benteng komunikasi rahasia yang tersirat secara abstrak dalam komposisi bilangan² prima pada id: 58.
id: 6 247
Δ
---+-----+-----+-----+-----+
1 | 72 | 1 | 73 | {74}|----------------- 57. Flowchart <-- 7(111)
---+-----+-----+-----+-----+ | v |
2 | 20 | 74 |{94} | 168 |----------- | 157 >> 58. Sequence <--- 8(111)
---+-----+-----+-----+-----+ | 1 | v |
3 | {18}|{95} |{113}|{208}|----- | {95>94>49>59} Grammar <---- 9(111)
---+-----+-----+-----+-----+ | 5 | | v |
4 | 7 | 114 | 121 | 235 |- 7 | | | 60. Channel<--6x10-->Δ
---+-----+-----+-----+-----+ | | | v |
5 | 13 | 122 | 135 | 257 |----- | |{61} >> 61. Route - Φ(61)-->{16}
---+-----+-----+-----+-----+ | | v |
6 | 19 | 136 | 155 | 291 |----------- | 62. Tree -- Φ(62)-->{26}
---+-----+-----+-----+-----+ | v |
7 | 9 | 156 | 165 | 321 |---------------- 63. Out --- Φ(63)-->{369}
---+-----+-----+-----+-----+
Pada sesi ini kita akan batasi pembahasan kedalam penggunaan diagram ini saja, mengenai detil paketnya akan dibahas terpisah dibagian dokumentasi repository terkait.
Description
===========
Getting result within a huge package (5 to 19) by spreading (11)
the untouched objects (7) and tunneling (13) them in to a definite scheme (17).
Compositions
============
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 63 - 64
| 102 | 1 | - | - | - | - | - | 11 | 114 5¨ » Buka Toko
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 64 - 65
| - | - | 200 | - | - | - | - | 47 | 247 7¨ » Stok Barang
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 65 - 66
| - | - | - | 40 | 1 | - | - | {98}| 139 11¨ » Merchant Centre
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 66 - 69
| - | - | - | - | - | 200 | - | 86 | 286 13¨ » Peluang Terbaik
+-----+-----+-----+-----+-----+-----+-----+-----+ ---- 67 - 68
| - | - | - | - | - | - | 50 | 107 | 157 17¨ » Portfolio
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 68 - 71
| 66 | 30 | 8 | 50 | 30 | 8 | - | 594 | 786 19¨ » Network
+-----+-----+-----+-----+-----+-----+-----+-----+ ---------------
168 | 31 208 {90}| 31 208 50 | 943 | 1729 17 - 29
Δ
77|78
Pada proses angka sebelas (11) di atas sistem bergerak ke angka enampuluh (60) dimana sistem akan masuk ke sistem pembobotan di angka sepuluh (10) yang polanya dilakukan via akar digital.
---+---
0. - 10. 10 20. 200 29. 2000 38. 20000 55. 1000000
1. 1 {11}.{20} 21. 300 30. 3000 39. 30000 64. 10000000
2. 2 12. 30 22. 400 31. 4000 40. 40000 73. 100000000
3. 3 13. 40 23. 500 32. 5000 41. 50000 82. 1000000000
4. 4 14. 50 24. 600 33. 6000 42. 60000 91. 10000000000
5. 5 15. 60 25. 700 34. 7000 43. 70000 ..
6. 6 16. 70 26. 800 35. 8000 44. 80000 ..
7. 7 17. 80 27. 900 36. 9000 45. 90000 ..
8. 8 18. 90 {28}.{1000} 37. 10000 46. 100000 99. 90000000000
9. 9 19. 100
---+
Proses angka ini berperan signifikan terhadap susunan bilangan² prima. Sebagai contoh berikut ini saya tunjukkan bagaimana 5‘ dan 3‘ bisa berkorelasi dengan 3‘ dan 5‘ via 53 dan 35.
- β(53) = β(50) + β(3) = 14 + 3 = 17 = 12 + 5 = β(30) + β(5) = β(35)
Disini angka 10 akan berada dalam pola sembilan (9) sehingga angka yang berperan disini adalah sembilan belas (19) dengan demikian angka 29 akan berkorelasi dengan 19 x id: 60 ke 78.
Filosofi dari uraian di atas adalah bahwa walaupun angka tujuh (7) berlaku dominan sebagai pola bagi apapun input output maka satu²nya yang tidak bisa dia garap adalah angka nol (0).
17: Package
27: Bagan
51: Attribute 15
52: Artifacts 25
53: Method 35
54: Model 45
55: Trace 55
56: Track 65 -----
28: Diagram Δ |
57: Flowchart 75 |
58: Sequence 85 |
59: Grammar 95 |
{60}:Channel >> 6x10 >> 06 |
61: Route 16 |
62: Tree 26 |
29: Mapping Δ |
63: Sizing 36-- 9 --¤
64: Sorting 46 |
65: Listener 56 -----
66: Looping 66
67: Capturing 76
68: Directions >> Δ22 >> 86 >> Δ4 + Δ18
Namun begitu ada angka lain yang menempel di angka nol maka sekecil apapun pola enam (6) angka berulang hasil pembagian tujuh (7) akan muncul. Disinilah letak dari skema angka 60.
id: 6
---+-----+-----+-----+-----+
1 | 72 | 1 | 73 | 74 |----------------- 57. Flowchart <-- 7(111)
---+-----+-----+-----+-----+ | v |
2 | 20 | 74 | 94 | 168 |----------- | 157 >> 58. Sequence <--- 8(111)
---+-----+-----+-----+-----+ | 1 | v |
3 | 18 | 95 | 113}| 208 |----- | | 59 Grammar <---- 9(111)
---+-----+-----+-----+-----+ | 5 | | v |
4 | 7 | 114 | 121 | 235 |- 7 | | | {60} Channel<--6x10-->Δ
---+-----+-----+-----+-----+ | | | v |
5 | 13 | 122 | 135 | 257 |----- | | 61 >> 61. Route - Φ(61)-->{16}
---+-----+-----+-----+-----+ | | v |
6 | 19 | 136 | 155 | 291 |----------- | 62. Tree -- Φ(62)-->{26}
---+-----+-----+-----+-----+ | v |
7 | 9 | 156 | 165 | 321 |---------------- 63. Out --- Φ(63)-->{369}
---+-----+-----+-----+-----+
Description
===========
Getting result within a huge package (5 to 19) by spreading (11)
the untouched objects (7) and tunneling (13) them in to a definite scheme (17).
Compositions
============
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 63 - 64
| 102 | 1 | - | - | - | - | - | 11 | 114 5¨ » Buka Toko
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 64 - 65
| - | - | 200 | - | - | - | - | 47 | 247 7¨ » Stok Barang
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 65 - 66
| - | - | - | 40 | 1 | - | - | 98 | 139 11¨ » Merchant Centre
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 66 - 69
| - | - | - | - | - | 200 | - | {86}| 286 13¨ » Peluang Terbaik
+-----+-----+-----+-----+-----+-----+-----+-----+ ---- 67 - 68
| - | - | - | - | - | - | 50 | 107 | 157 17¨ » Portfolio
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 68 - 71
| 66 | 30 | 8 | 50 | 30 | 8 | - | 594 | 786 19¨ » Network
+-----+-----+-----+-----+-----+-----+-----+-----+ ---------------
168 | 31 208 {90}| 31 208 50 | 943 | 1729 17 - 29
Δ
77|78
17: Package
27: Bagan
51: Attribute 15
52: Artifacts 25
53: Method 35
54: Model 45
55: Trace 55
56: Track 65 -----
28: Diagram Δ |
57: Flowchart 75 |
58: Sequence 85 |
59: Grammar 95 |
60: Channel >> 6x10 >> 06 |
{61}:Route 16 |
62: Tree 26 |
29: Mapping Δ |
63: Sizing 36-- 9 --¤
64: Sorting 46 |
65: Listener 56 -----
66: Looping 66
67: Capturing 76
68: Directions >> Δ22 >> 86 >> Δ4 + Δ18
id: 6
---+-----+-----+-----+-----+
1 | 72 | 1 | 73 | 74 |----------------- 57. Flowchart <-- 7(111)
---+-----+-----+-----+-----+ | v |
2 | 20 | 74 | 94 | 168 |----------- | 157 >> 58. Sequence <--- 8(111)
---+-----+-----+-----+-----+ | 1 | v |
3 | 18 | 95 | 113}| 208 |----- | | 59 Grammar <---- 9(111)
---+-----+-----+-----+-----+ | 5 | | v |
4 | 7 | 114 | 121 | 235 |- 7 | | | 60. Channel<--6x10-->Δ
---+-----+-----+-----+-----+ | | | v |
5 | 13 | 122 | 135 | 257 |----- | |{61} >> {61} Route - Φ(61)-->{16}
---+-----+-----+-----+-----+ | | v |
6 | 19 | 136 | 155 | 291 |----------- | 62. Tree -- Φ(62)-->{26}
---+-----+-----+-----+-----+ | v |
7 | 9 | 156 | 165 | 321 |---------------- 63. Out --- Φ(63)-->{369}
---+-----+-----+-----+-----+
Description
===========
Getting result within a huge package (5 to 19) by spreading (11)
the untouched objects (7) and tunneling (13) them in to a definite scheme (17).
Compositions
============
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 63 - 64
| 102 | 1 | - | - | - | - | - | 11 | 114 5¨ » Buka Toko
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 64 - 65
| - | - | 200 | - | - | - | - | 47 | 247 7¨ » Stok Barang
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 65 - 66
| - | - | - | 40 | 1 | - | - | 98 | 139 11¨ » Merchant Centre
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 66 - 69
| - | - | - | - | - | 200 | - | 86 | 286 13¨ » Peluang Terbaik
+-----+-----+-----+-----+-----+-----+-----+-----+ ---- 67 - 68
| - | - | - | - | - | - | 50 |{107}| 157 17¨ » Portfolio
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 68 - 71
| 66 | 30 | 8 | 50 | 30 | 8 | - | 594 | 786 19¨ » Network
+-----+-----+-----+-----+-----+-----+-----+-----+ ---------------
168 | 31 208 {90}| 31 208 50 | 943 | 1729 17 - 29
Δ
77|78
Pada akun user kita alokasikan 11 file yang mewakili formasi objek repository 2 sd 12 sehingga di angka 1 dan 2 akan didapat Formasi-1729.
- Formasi user dan organisasi berlaku sebagai karakter 11 dan 13 ke angka 77,
- Akun user berlaku rangkap 77 ke 43 objek (4+3=7) maka jumlahnya 2 x 43 atau 86,
- Akun organisasi berlaku rangkap 77 ke formasi 14 vektor maka jumlahnya 2x14 atau 28.
- 139 + 286 + 114 + 247 + 157 + 786 = 786 + 157 + 786 = 1729 = 7 x 13 x 19
- 36® - 9® (Angka 1,2,10,47,66,73,86,102,107) - 6°(diagram) - 12*® (pinned) = 36® - 27® = 9®
M: 6® = (2,{3}), ({29,30,31,32}) --> 2,89+29,3 = 289+329 = 618 (main)
F: 6'® = (40,41), (43,44,45,46) --> 30+30+10+10+10+10 = 60+40 (user)
C1: 10°® = 3*®+3*®+4® = (7,13,19),(20,27,36),({38,42,50,68}) --> 200 (main)
C2: 7® = 5®+2® = 1®+4*®+2*® = 1®+6*® = 10,(11,12,14,15,26,28) --> 168 (user)
Dari Formasi-1729 kita akan terus bergerak sampai ke titik akhir yaitu skema in-out. Agar sampai kesana maka disini saya sudah pilih program² untuk formasi angka 10 dan 143 ini.
Pada proses awal kita berlakukan semua angka sebagai dummy dengan cara bypass kemudian satu persatu kita alokasikan sebagai bagian dari 114 repository (lihat Project Map).
Dari lima (5) tahapan ini angka 78 berlanjut ke tahap enam (6) yaitu ke angka 786 berupa skema kromosom dimana pada sistem 114 angka dasar ini semua menuju angka 1729.
Hasil pertama kedua akun akan menuju formasi 786 ke dobel helix yang digerakkan vektor 71 dan 68 berdasarkan susunan angka prima pada kubus 10x10x10 atau 1000 terhadap Golden Ratio.
- π(1000) + 1000/Φ = 168 + 618 = (7x71) + (17x17) = 786
Selanjutnya kita akan bahas bagaimana formasi angka² ini pada setiap layar. Seperti yang sudah dijelaskan sebelumnya semua ada tiga (3) layar. Kita mulai dari formasi 786 di layar-1.
Pada pembagian di layar-1 ini angka 29 akan berkorelasi dengan polar 12 ke 18 sehingga angka yang berperan adalah delapan belas (18) maka pada prosesnya dilakukan via 18 x id: 79 ke 96.
- d(43,71,114) = d(7,8,6) » 786
Berikut ini detil formasi 786 berbasis batas polaritas di angka 19 pada layar-1 yang terbagi dalam 3 kelompok dengan formasi (7,13,19). Persis seperti halnya skema True Prime Pairs.
- π(1000) = π(Φ x 618) = 168 = 100 + 68 = (50x2) + (66+2) = 102 + 66
$True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+---------
| 1 | 5
1 +-----+
| 2 | 7
-----+-----+--- } 36 » 6®
| 3 | 11
2 +-----+
| 4 | 13
-----+-----+---------
| 5 | 17
3 +-----+ } 36 » 6®
| 6 | 19
-----+-----+---------
Scheme:
168 + 329 + 289 = 786
d(786) = d(7+8+6) = d(21) = d(3)
Modulus:
30 « 60 » 90
| | |
3:29 « 1:6:8 » 28:9
└── 3 + └── 6 + └── 9 = 18
|------------ 36' --------------|----------------------------36' ----------------------------|
| 19' | 17' | 13' | 11' | 7' | 5' |
+---+----+----+---+----+----+---+---+----+-----+----+----+----+----+----+-----+----+----+----+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
+---+----+----+---+----+----+---+---+----+-----+----+----+----+----+----+-----+----+----+----+
| 2 | 60 | 40 | 1 | 30 | 30 | 5 | 1 | 30 | 200 | 8 | 40 | 50 | 1 | 30 | 200 | 8 | 10 | 40 |
+---+----+----+---+----+----+---+---+----+-----+----+----+----+----+----+-----+----+----+----+
| ° |ΔΔΔΔ ΦΦ | • ΔΔ ΔΔ ¤ | • ΔΔ ΦΦΦ Φ ΦΦ ¤¤¤¤| • ΔΔ ΦΦΦ Φ ¤¤ ΦΦ |
|---- 102 ---|----- 66 ------|-------- 329 = 7 x 47 -------|- 289 = (8+9)² = 2 & (2³+9²) -|
|--2x3x(8+9)--|--- 2x3x(2+9) ---|---- (1+2) & (2x9)+(2+9) ----|------ 2 & (8x9)+(8+9) -------|
|-------- 168 = π(1000) --------|------ 1229 = π(10000) ------|------ π(89²) = 1000 ---------|
|-------- 168 = π(618xΦ) -------|----- 618 = 1000/Φ = 1000x1000/1618 = 10^6/(2x8)&(2x9) -----|
Note:
• = 1000 = 10³ (Triple Ten)
¤ = π(1000) = 168 (Basic Primes)
Φ = 1000/618 = 1,618 (Golden Ratio)
Δ(1,6,18) = 61+28 = 89 (Mersenne Primes)
Faktors:
168 = 12x14 = 8x21 = 7x24 = 6x28 = 4x42 = 3x56 = 2x84
618 = 6x103 = 6x(100+3) = 3x206 = 3x(200+6) = 2x309 = 2x(300+9)
1+6+8 = π(1x6x8) = π(1x48) = π(2x24) = π(3x16)= π(4x12) = π(6x8)
Permutations:
168 = 102 + 66 = 2x3x((8+9)+(2+9)) = π(Φ(289+329)) = π(Φ((8+9)²+(1+2)&29))
168 + 618 = 168 + 329 + 289 = (7x24) + (7x47) + (8+9)² = (7x71) + (17x17)
Pola seperti ini dilakukan secara mirror 17 via 29 urutan formasi (1,2,3) dari True Prime Pairs pada batas (7,13,19) dengan komposisi repository 2®+5®+6®+6® ke 43+48+48 atau 43+96.
Berikutnya kita bahas formasi bobot di layar-2.
Dalam project ini prosesnya dilakukan via GitHub Actions dan GitHub API dimana target akhirnya disetel guna mendapatkan Metoda CI/CD yang paling optimal dalam melaksanakan Efisiensi.
Detilnya dibahas terpisah yang akan berujung format konfigurasi Pemrograman dalam tiga (3) proses: (1). Bagan (formasi-329), (2). Diagram (formasi-289), dan (3). Mapping (formasi-168).
17: Package
27: Bagan
51: Attribute 15
52: Artifacts 25
53: Method 35
54: Model 45
55: Trace 55
56: Track 65 -----
28: Diagram Δ |
57: Flowchart 75 |
58: Sequence 85 |
59: Grammar 95 |
60: Channel >> 6x10 >> 06 |
61: Route 16 |
{62}:Tree 26 |
29: Mapping Δ |
63: Sizing 36-- 9 --¤
64: Sorting 46 |
65: Listener 56 -----
66: Looping 66
67: Capturing 76
68: Directions >> Δ22 >> 86 >> Δ4 + Δ18
- 157th prime = 919
id: 6
---+-----+-----+-----+-----+
1 | 72 | 1 |{73} | 74 |----------------- 57. Flowchart <-- 7(111)
---+-----+-----+-----+-----+ | v |
2 | 20 |{74} | 94 |{168}|----------- |{157} >> 58 Sequence <--- 8(111)
---+-----+-----+-----+-----+ | {1} | v |
3 | 18 | 95 | 113 | 208 |----- | | 59. Grammar <---- 9(111)
---+-----+-----+-----+-----+ | {5} | | v |
4 | 7 |{114}| 121 | 235 |-{7} | | | 60. Channel<--6x10-->Δ
---+-----+-----+-----+-----+ | | | v |
5 | 13 | 122 | 135 | 257 |----- | |{61} >> 61. Route - Φ(61)-->{16}
---+-----+-----+-----+-----+ | | v |
6 | 19 | 136 | 155 | 291 |----------- | {62} Tree -- Φ(62)-->{26}
---+-----+-----+-----+-----+ | v |
7 | 9 |{156}|{165}| 321 |---------------- 63. Out --- Φ(63)-->{369}
---+-----+-----+-----+-----+
Output akan ada di id: 63 yaitu formasi 6x3 Minor Hexagon dari id: 18 ke id: 36 berupa Project Map yang diteruskan ke Situs Web yang dituju via id: 64 sd 68 sehingga berlaku palindrom 3,6,9.
- 61 = 18th prime
Sebagai ilustrasi, berikut saya uraikan contoh bagaimana cara menerapkan keseluruhan enam (6) tahap dari formasi True Prime Pairs ini kedalam proses e-Commerce.
Description
===========
Getting result within a huge package (5 to 19) by spreading (11)
the untouched objects (7) and tunneling (13) them in to a definite scheme (17).
Compositions
============
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 63 - 64
| 102 | 1 | - | - | - | - | - | 11 | 114 5¨ » Buka Toko
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 64 - 65
| - | - | 200 | - | - | - | - | 47 | 247 7¨ » Stok Barang
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 65 - 66
| - | - | - | 40 | 1 | - | - | 98 | 139 11¨ » Merchant Centre
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 66 - 69
| - | - | - | - | - | 200 | - | 86 | 286 13¨ » Peluang Terbaik
+-----+-----+-----+-----+-----+-----+-----+-----+ ---- 67 - 68
| - | - | - | - | - | - | 50 | 107 | 157 17¨ » Portfolio
+-----+-----+-----+-----+-----+-----+-----+-----+ ----- 68 - 71
| 66 | 30 | 8 | 50 | 30 | 8 | - |{594}| 786 19¨ » Network
+-----+-----+-----+-----+-----+-----+-----+-----+ ---------------
168 | 31 208 {90}| 31 208 50 | 943 |{1729} 17 - 29
Δ
77|78
Bila skema ini sudah benar kita terapkan pada target tentu akan muncul angka 1729 yang berlaku sebagai kunci bahwa disana sudah sesuai dengan yang kita setel. Vise Versa.
Algoritma pemecahan dan penyatuan ini akan diterapkan sesuai uraian pada Bagan dan Diagram
- Repository ini adalah situs user dari akun user menerapkan karakter angka "satu (1)".
- Repository dari situs organisasi dari akun organisasi menerapkan karakter angka "dua (2)".
Sedangkan objek yang berlaku sebagai dua (2) pasang kromosom saya tentukan seperti ini:
- Profile User dan Organisasi berlaku untuk formasi input (M dan F).
- Situs Project dan Situs Toko berlaku untuk formasi output (C1 dan C2).
{17}:Package
27: Bagan
51: Attribute 15
52: Artifacts 25
53: Method 35
54: Model 45
55: Trace 55
56: Track 65 -----
28: Diagram Δ |
57: Flowchart 75 |
58: Sequence 85 |
59: Grammar 95 |
60: Channel >> 6x10 >> 06 |
61: Route 16 |
62: Tree 26 |
{29}:Mapping Δ |
63: Sizing 36-- 9 --¤
64: Sorting 46 |
65: Listener 56 -----
66: Looping 66
67: Capturing 76
68: Directions >> Δ22 >> 86 >> Δ4 + Δ18
Seluruh file wiki ini disalin di salah satu repository dimana file configurasi ditempatkan. Disini kita bisa gunakan otomatisasi update (Webhooks) via GollumEvent.
Seperti yang bisa Anda simak, uraian² ini masih berupa gambaran tentang pola angka 18 secara umum. Dengan demikian kita akan bahas lebih detil lagi pada halaman dari repository tetkait.
Disitu Anda bisa dapatkan cara yang ditempuh dalam projek ini sehingga kita sampai pada tahapan dalam mendapatkan hasil output sesuai yang sudah kita bahas di atas.
Sekian.
17/05/1442H
SALAM Sukses!
© Chetabahana Project
⏫ | 🔼 | ⏪ Intro |
|
🔁 Base |
Next |
Last ⏩ | 🔽 | ⏬ |
---|---|---|---|---|---|---|---|---|
This wiki is courtesy of Chetabahana Project. Find all of them on Project Map. |
This documentation is mapped under Mapping and licensed under Apache License, Version 2.0.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Copyright (c) 2018-2020 Chetabahana Project